首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2–GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2–RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.  相似文献   

5.
Li H  Outten CE 《Biochemistry》2012,51(22):4377-4389
Monothiol glutaredoxins (Grxs) with a signature CGFS active site and BolA-like proteins have recently emerged as novel players in iron homeostasis. Elegant genetic and biochemical studies examining the functional and physical interactions of CGFS Grxs in the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have unveiled their essential roles in intracellular iron signaling, iron trafficking, and the maturation of Fe-S cluster proteins. Biophysical and biochemical analyses of the [2Fe-2S] bridging interaction between CGFS Grxs and a BolA-like protein in S. cerevisiae provided the first molecular-level understanding of the iron regulation mechanism in this model eukaryote and established the ubiquitous CGFS Grxs and BolA-like proteins as novel Fe-S cluster-binding regulatory partners. Parallel studies focused on Escherichia coli and human homologues for CGFS Grxs and BolA-like proteins have supported the studies in yeast and provided additional clues about their involvement in cellular iron metabolism. Herein, we review recent progress in uncovering the cellular and molecular mechanisms by which CGFS Grxs and BolA-like proteins help regulate iron metabolism in both eukaryotic and prokaryotic organisms.  相似文献   

6.
7.
8.
9.
10.
Autoregulation of GLD-2 cytoplasmic poly(A) polymerase   总被引:1,自引:0,他引:1  
Cytoplasmic polyadenylation regulates mRNA stability and translation and is required for early development and synaptic plasticity. The GLD-2 poly(A) polymerase catalyzes cytoplasmic polyadenylation in the germline of metazoa. Among vertebrates, the enzyme is encoded by two isoforms of mRNA that differ only in the length of their 3'-UTRs. Here we focus on regulation of vertebrate GLD-2 mRNA. We show that the 3'-UTR of GLD-2 mRNA elicits its own polyadenylation and translational activation during frog oocyte maturation. We identify the sequence elements responsible for repression and activation, and demonstrate that CPEB and PUF proteins likely mediate repression in the resting oocyte. Regulated polyadenylation of GLD-2 mRNA is conserved, as are the key regulatory elements. Poly(A) tails of GLD-2 mRNA increase in length in the brain in response to neuronal stimulation, suggesting that a comparable system exists in that tissue. We propose a positive feedback circuit in which translation of GLD-2 mRNA is stimulated by its polyadenylation, thereby reinforcing the switch to polyadenylate and activate batteries of mRNAs.  相似文献   

11.
12.
应用酵母双杂交系统筛选与CIKS(151-574)相互作用的蛋白质   总被引:1,自引:0,他引:1  
CIKS(ConnectiontoIKKandSAPK JNK)是最近发现的细胞蛋白 ,能激活IKK和SAPK JNK。应用酵母双杂交系统 ,将CIKS(15 1 5 74)插入载体pAS2 1作为诱铒 ,筛选人HeLa细胞MATCHMAKERcDNA文库 ,以期为阐明NFκB及JNK活性调控的分子机理提供新的线索。筛选得到 6个阳性AD 文库质粒 ,并用酵母双杂交实验验证了阳性AD 文库质粒与CIKS的相互作用。将阳性AD 文库质粒测序并对测序结果做BLAST分析 ,发现它们分别是RIKENcDNA 473340F0 3,PLAC8,CD2 7BP (Siva 1) ,CDC5L ,SnRNPsmB ,DVL2。CIKS能与这些功能各异的蛋白质相互作用 ,表明CIKS在细胞的多种生理活动中发挥作用。  相似文献   

13.
The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins.  相似文献   

14.
15.
16.
Antagonism between retinoic acid receptors.   总被引:2,自引:9,他引:2       下载免费PDF全文
  相似文献   

17.
18.
19.
20.
Recoverin, a 23-kDa Ca2+-binding protein of the neuronal calcium sensing (NCS) family, inhibits rhodopsin kinase, a Ser/Thr kinase responsible for termination of photoactivated rhodopsin in rod photoreceptor cells. Recoverin has two functional EF hands and a myristoylated N terminus. The myristoyl chain imparts cooperativity to the Ca2+-binding sites through an allosteric mechanism involving a conformational equilibrium between R and T states of the protein. Ca2+ binds preferentially to the R state; the myristoyl chain binds preferentially to the T state. In the absence of myristoylation, the R state predominates, and consequently, binding of Ca2+ to the non-myristoylated protein is not cooperative. We show here that a mutation, C39A, of a highly conserved Cys residue among NCS proteins, increases the apparent cooperativity for binding of Ca2+ to non-myristoylated recoverin. The binding data can be explained by an effect on the T/R equilibrium to favor the T state without affecting the intrinsic binding constants for the two Ca2+ sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号