首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highlights? The ubiquitin ligase gp78 recruits ubiquitinated substrates via its CUE domain ? gp78CUE:Ub complex reveals a large set of specific interactions ? gp78CUE binds to both distal and proximal moities of diubiquitin in a similar fashion ? The gp78CUE domain binds to K48- and K63-linked diubiquitin equally well  相似文献   

2.
3.
4.
Schizosaccharomyces pombe Rpn10 (SpRpn10) is a proteasomal ubiquitin (Ub) receptor located within the 19 S regulatory particle where it binds to subunits of both the base and lid subparticles. We have solved the structure of full-length SpRpn10 by determining the crystal structure of the von Willebrand factor type A domain and characterizing the full-length protein by NMR. We demonstrate that the single Ub-interacting motif (UIM) of SpRpn10 forms a 1:1 complex with Lys48-linked diUb, which it binds selectively over monoUb and Lys63-linked diUb. We further show that the SpRpn10 UIM binds to SpRpn12, a subunit of the lid subparticle, with an affinity comparable with Lys48-linked diUb. This is the first observation of a UIM binding other than a Ub fold and suggests that SpRpn12 could modulate the activity of SpRpn10 as a proteasomal Ub receptor.  相似文献   

5.
The downregulation of cell surface receptors by endocytosis is a fundamental requirement for the termination of signalling responses and ubiquitination is a critical regulatory step in receptor regulation. The K5 gene product of Kaposi's sarcoma‐associated herpesvirus is an E3 ligase that ubiquitinates and downregulates several cell surface immunoreceptors, including major histocompatibility complex (MHC) class I molecules. Here, we show that K5 targets the membrane proximal lysine of MHC I for conjugation with mixed linkage polyubiquitin chains. Quantitative mass spectrometry revealed an increase in lysine‐11, as well as lysine‐63, linked polyubiquitin chains on MHC I in K5‐expressing cells. Using a combination of mutant ubiquitins and MHC I molecules expressing a single cytosolic lysine residue, we confirm a functional role for lysines‐11 and ‐63 in K5‐mediated MHC I endocytosis. We show that lysine‐11 linkages are important for receptor endocytosis, and that complex mixed linkage polyubiquitin chains are generated in vivo.  相似文献   

6.
In replicating yeast, lysine 63-linked polyubiquitin (polyUb) chains are extended from the ubiquitin moiety of monoubiquitinated proliferating cell nuclear antigen (monoUb-PCNA) by the E2-E3 complex of (Ubc13-Mms2)-Rad5. This promotes error-free bypass of DNA damage lesions. The unusual ability of Ubc13-Mms2 to synthesize unanchored Lys63-linked polyUb chains in vitro allowed us to resolve the individual roles that it and Rad5 play in the catalysis and specificity of PCNA polyubiquitination. We found that Rad5 stimulates the synthesis of free polyUb chains by Ubc13-Mms2 in part by enhancing the reactivity of the Ubc13∼Ub thiolester bond. Polyubiquitination of monoUb-PCNA was further enhanced by interactions between the N-terminal domain of Rad5 and PCNA. Thus, Rad5 acts both to align monoUb-PCNA with Ub-charged Ubc13 and to stimulate Ub transfer onto Lys63 of a Ub acceptor. We also found that Rad5 interacts with PCNA independently of the number of monoubiquitinated subunits in the trimer and that it binds to both unmodified and monoUb-PCNA with similar affinities. These findings indicate that Rad5-mediated recognition of monoUb-PCNA in vivo is likely to depend upon interactions with additional factors at stalled replication forks.DNA is susceptible to chemical alteration by many endogenous and exogenous agents. To counter this threat and maintain genome integrity, eukaryotic cells employ three main strategies: DNA repair pathways that directly reverse DNA damage, cell cycle checkpoints that allow time to repair the damage prior to replication, and DNA damage tolerance (DDT),2 which is a method of bypassing DNA damage lesions during the DNA replication phase of the cell cycle.Proliferating cell nuclear antigen (PCNA) is a key regulatory protein in DNA replication and repair (1). At the replication fork, DNA is encircled by PCNA, a homotrimeric protein that promotes processive movement of the replicative DNA polymerase. Upon DNA damage and subsequent stalling of the replicative polymerase, Ub modifications of PCNA signal DDT, which allows a cell to bypass the lesion and proceed past this potential block in replication (24).In the DDT pathway, as in other Ub-dependent pathways, Ub is conjugated to a substrate by the actions of three enzymes, an E1 activating enzyme, an E2 conjugating enzyme, and an E3 ligase (5). The E1 enzyme initiates the pathway in a two-step reaction that utilizes ATP hydrolysis to activate the C terminus of Ub, culminating in the formation of an E1∼Ub thiolester. Subsequent transthiolation to the active site cysteine of the E2 generates an E2∼Ub thiolester. An E3 ligase then brings a substrate into close proximity to the E2∼Ub intermediate, thereby catalyzing the formation of an isopeptide bond between the amino group of a substrate lysine and the C-terminal glycine of Ub. Polyubiquitination occurs when this substrate is another Ub, either free or as part of a Ub-protein conjugate.The DDT pathway is characterized by distinct ubiquitination events on PCNA that occur in two stages (3, 4, 6). The first of these is monoubiquitination of lysine 164 on one or more of the PCNA subunits by the E2-E3 complex of Rad6-Rad18 in Saccharomyces cerevisiae (3, 4, 7). monoUb-PCNA can serve either as a signal for error-prone bypass of the DNA lesion by recruiting translesion polymerases or as a substrate for subsequent polyubiquitination by the E2 heterodimer Ubc13-Mms2 and the E3 ligase Rad5 (3, 4, 8, 9). The polyUb chain extended from the initial Ub moiety on monoUb-PCNA is linked specifically through Ub Lys63 residues. This Lys63-linked chain is thought to enable a template switch mechanism that allows for error-free bypass of the DNA lesion, in part by utilizing the single-strand DNA-dependent helicase activity of Rad5 (3, 4, 10, 11). Both PCNA ubiquitination events promote bypass of the DNA lesion rather than direct removal or repair of the lesion.We have been interested in the mechanism by which the yeast (Ubc13-Mms2)-Rad5 complex catalyzes the formation of Lys63-linked polyUb on PCNA. Previous studies have shown that heterodimerization of the Ubc13-Mms2 E2 is essential for Lys63-specific Ub-Ub conjugation in vitro and in vivo (1215). Ubc13 is a canonical E2 enzyme with an active site cysteine that receives activated Ub by transthiolation from the E1∼Ub complex (12, 13). This Ub is referred to as the “donor Ub.” Mms2 is a Ub E2 variant protein that lacks the active site cysteine (12, 15); rather, Mms2 binds to a second Ub, the “acceptor Ub,” and positions it to facilitate nucleophilic attack on the Ubc13∼Ub thiolester bond by the ϵ-amine of Lys63 (15, 16). The positioning of the acceptor Ub by Mms2 controls the specificity of polyUb assembly such that only Lys63-linked chains can be formed (16).Ubc13-Mms2 can synthesize Lys63-linked chains in vitro in the absence of a PCNA substrate or an E3 ligase (12, 13). However, unlike the synthesis of free Lys63-linked polyUb chains by Ubc13-Mms2, little is known about the polyubiquitination of PCNA or the role of the Rad5 E3 ligase in these reactions. Rad5 can bind PCNA and Rad18, and it contains a catalytic RING domain that characterizes the largest class of E3 ligases (1721). There is evidence that RING E3s like Rad5 may play a more active role in ubiquitination than simply bringing the substrate into close proximity with the E2∼Ub. Several RING E3s have been shown to stimulate the synthesis of unanchored polyUb chains or autoubiquitination of their cognate E2s in the absence of substrates (2224). This stimulation may be related to the ability of RING E3s to enhance reactivity of the E2∼Ub thiolester bond through allosteric effects (25, 26).Using purified recombinant forms of Ubc13, Mms2, and Rad5, we have explored the assembly of free Lys63-linked polyUb chains as well as the extension of a polyUb chain on a synthetic analog of monoUb-PCNA. We show that Rad5 facilitates ubiquitination in part by increasing the reactivity of the Ubc13∼Ub thiolester bond. With monoUb-PCNA substrates, Rad5 also stimulated polyubiquitination through direct interactions with PCNA and recruitment of Ub-charged Ubc13-Mms2. Surprisingly, Rad5 recognition of monoUb-PCNA appeared to depend on interactions only with the PCNA moiety of the conjugate, which suggests that substrate selectivity in vivo is likely to depend on additional factors.  相似文献   

7.
8.
Polyubiquitination of misfolded proteins, especially K63-linked polyubiquitination, is thought to be associated with the formation of inclusion bodies. However, it is not well explored whether appropriate editing of the different types of ubiquitin linkages by deubiquitinating enzymes (DUBs) affects the dynamics of inclusion bodies. In this study, we report that a specific DUB, ataxin-3, is required for the efficient recruitment of the neurodegenerative disease-associated protein copper-zinc superoxide dismutase (SOD1) to aggresomes. The overexpression of ataxin-3 promotes mutant SOD1 aggresome formation by trimming K63-linked polyubiquitin chains. Moreover, knockdown of ataxin-3 decreases mutant SOD1 aggresome formation and increases cell death induced by mutant SOD1. Thus, our data suggest that the sequestration of misfolded SOD1 into aggresomes, which is driven by ataxin-3, plays an important role in attenuating protein misfolding-induced cell toxicity.  相似文献   

9.
底物蛋白的多聚泛素链修饰参与调节多种生命运动过程(包括蛋白质降解、自噬、DNA损伤修复、细胞周期、信号转导、基因表达、转录调节、炎症免疫等).去泛素化酶通过水解底物蛋白的单泛素和泛素链修饰,对泛素相关过程进行反向调节.人类基因组中约含90余种去泛素化酶,它们通过对自身酶活性和底物识别特异性的调节,实现了对细胞内复杂泛素过程的精密且层次性的调控.本文针对去泛素化酶对不同泛素链的识别选择性,综述目前已知泛素链水解酶的选择性和产生机制.  相似文献   

10.
Polyubiquitin chains: polymeric protein signals   总被引:1,自引:0,他引:1  
The 76-residue protein ubiquitin exists within eukaryotic cells both as a monomer and in the form of isopeptide-linked polymers called polyubiquitin chains. In two well-described cases, structurally distinct polyubiquitin chains represent functionally distinct intracellular signals. Recently, additional polymeric structures have been detected in vivo and in vitro, and several large families of proteins with polyubiquitin chain-binding activity have been discovered. Although the molecular mechanisms governing specificity in chain synthesis and recognition are still incompletely understood, the scope of signaling by polyubiquitin chains is likely to be broader than originally envisioned.  相似文献   

11.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

12.
A single or double amino acid insertion at the monomer-monomer junction of the universal eukaryotic protein polyubiquitin is unique to Cercozoa and Foraminifera, closely related 'core' phyla in the protozoan infrakingdom Rhizaria. We screened 11 other candidate rhizarians for this insertion: Radiozoa (polycystine and acantharean radiolaria), a 'microheliozoan', and Apusozoa; all lack it, supporting suggestions that Foraminifera are more closely related to Cercozoa than either is to other eukaryotes. The insertion's size was ascertained for 12 additional Cercozoa to help resolve their basal branching order. The earliest branching Cercozoa generally have a single amino acid insertion, like all Foraminifera, but a large derived clade consisting of all Monadofilosa except Metopion, Helk-esimastix, and Cercobodo agilis has two amino acids, suggesting one doubling event and no reversions to a single amino acid. Metromonas and Sainouron, cercozoans of uncertain position, have a double insertion, suggesting that they belong in Monadofilosa. An alternative interpretation, suggested by the higher positions for Metopion and Cercobodo on Bayesian trees compared with most distance trees, cannot be ruled out, i.e. that the second insertion took place earlier, in the ancestral filosan, and was followed by three independent reversions to a single amino acid in Chlorarachnea, Metopion and Cercobodo.  相似文献   

13.
Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.  相似文献   

14.
Posttranslational modification of proteins by covalent attachment of a small protein ubiquitin (Ub) or a polymeric chain of Ub molecules (called polyubiquitin) is involved in controlling a vast variety of processes in eukaryotic cells. The question of how different polyubiquitin signals are recognized is central to understanding the specificity of various types of polyubiquitination. In polyubiquitin, monomers are linked to each other via an isopeptide bond between the C-terminal glycine of one Ub and a lysine of the other. The functional outcome of polyubiquitination depends on the particular lysine involved in chain formation and appears to rely on linkage-dependent conformation of polyubiquitin. Thus, K48-linked chains, a universal signal for proteasomal degradation, under physiological conditions adopt a closed conformation where functionally important residues L8, I44, and V70 are sequestered at the interface between two adjacent Ub monomers. By contrast, K63-linked chains, which act as a nonproteolytic regulatory signal, adopt an extended conformation that lacks hydrophobic interubiquitin contact. Little is known about the functional roles of the so-called “noncanonical” chains (linked via K6, K11, K27, K29, or K33, or linked head-to-tail), and no structural information on these chains is available, except for information on the crystal structure of the head-to-tail-linked diubiquitin (Ub2). In this study, we use molecular modeling to examine whether any of the noncanonical chains can adopt a closed conformation similar to that in K48-linked polyubiquitin. Our results show that the eight possible Ub2 chains can be divided into two groups: chains linked via K6, K11, K27, or K48 are predicted to form a closed conformation, whereas chains linked via K29, K33, or K63, or linked head-to-tail are unable to form such a contact due to steric occlusion. These predictions are validated by the known structures of K48-, K63-, and head-to-tail-linked chains. Our study also predicts structural models for Ub2 chains linked via K6, K11, or K27. The implications of these findings for linkage-selective recognition of noncanonical polyubiquitin signals by various receptors are discussed.  相似文献   

15.
16.
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin''s ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved.  相似文献   

17.
Ubiquitin is a highly conserved protein, and is encoded by a multigene family among eukaryote species. The polyubiquitin genes, UbB and UbC, comprise tandem multiple ubiquitin coding units without a spacer region or intron. We determined nucleotide sequences for the UbB and UbC of human, chimpanzee, gorilla, and orangutan. The ubiquitin repeat number of UbB was constant (3) in human and great apes, while that of UbC varied: 6 to 11 for human, 10 to 12 for chimpanzee, 8 for gorilla, and 10 for orangutan. The heterogeneity of the repeat number within closely related hominoid species suggests that a lineage-specific unequal crossover and/or gene duplication occurred. A marked homogenization of UbC occurred in gorilla with a low level of synonymous difference (ps). The homogenization of UbC also occurred in chimpanzee and less strikingly in human. The first and last ubiquitin coding units of UbC were clustered independently between species, and less affected by homogenization during the hominoid evolution. Therefore, the homogenization of ubiquitin coding units is likely due to an unequal crossing-over inside the ubiquitin units. The lineage-specific homogenization of UbC among closely related species suggests that concerted evolution has a key role in the short-term evolution of UbC.  相似文献   

18.
19.
GTP cyclohydrolase 1 (GTPCH1) is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4). GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD) results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131) in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.  相似文献   

20.
Modification of proteins by ubiquitin (Ub) and Ub-like (Ubl) modifiers regulates a variety of cellular functions. The ability of Ub to form chains of eight structurally and functionally distinct types adds further complexity to the system. Ub-specific proteases (USPs) hydrolyse polyUb chains, and some have been suggested to be cross-reactive with Ubl modifiers, such as neural precursor cell expressed, developmentally downregulated 8 (NEDD8) and interferon-stimulated gene 15 (ISG15). Here, we report that USP21 cleaves Ub polymers, and with reduced activity also targets ISG15, but is inactive against NEDD8. A crystal structure of USP21 in complex with linear diUb aldehyde shows how USP21 interacts with polyUb through a previously unidentified second Ub- and ISG15-binding surface on the USP domain core. We also rationalize the inability of USP21 to target NEDD8 and identify differences that allow USPs to distinguish between structurally related modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号