首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three of the membrane-spanning polypeptides of the chloroplast cytochrome (cyt) b6f complex were sequentially released from the thylakoid membrane, in the order cyt b6, suIV and Rieske iron-sulfur protein, as the pH was increased from 10 to 12, a protocol usually employed to remove peripheral proteins from membranes. The fourth polypeptide of the cyt b6f complex, cyt f, which spans the membrane once, was apparently not released. The pH values for half-release at low ionic strength were approximately 10.7, 11.1 and 11.3 respectively. The separation of the polypeptides of the complex and the sequential release is readily seen at pH 11, where the loss from the membrane of cyt b6, suIV and Fe iron-sulfur center is approximately 90%, 50% and 20%, respectively. the release of cyt b6 from the membrane was reflected by the absence of its characteristic reduced minus oxidized absorbance signal. The pH values at which the release occurred increased as the ionic strength was raised, implying that the release of the b6f polypeptides arises from extrusion due to repulsive electrostatic interactions probably caused by deprotonation of tyrosine and lysine residues. The lipid content of the released polypeptides was very low, consistent with the observation of a non-membranous state. It is proposed that the pH-dependent extrusion requires two electrostatic effects at alkaline pH higher than approximately 10.5: (i) increased electrostatic repulsion between neighbouring polypeptides of the complex, arising from increased net negative charge in the peripheral segments of these polypeptides, which can cause separation of the polypeptides from the complex; and (ii) ionization of residues such as tyrosine in the membrane-spanning alpha-helices, and neutralization of residues such as lysine which can bind to the negative membrane surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have isolated the nuclear photosynthetic mutant hcf153 which shows reduced accumulation of the cytochrome b(6)f complex. The levels and processing patterns of the RNAs encoding the cytochrome b(6)f subunits are unaltered in the mutant. In vivo protein labeling experiments and analysis of polysome association revealed normal synthesis of the large chloroplast-encoded cytochrome b(6)f subunits. The mutation resulted from a T-DNA insertion and the affected nuclear gene was cloned. HCF153 encodes a 15 kDa protein containing a chloroplast transit peptide. Sequence similarity searches revealed that the protein is restricted to higher plants. A HCF153-Protein A fusion construct introduced into hcf153 mutant plants was able to substitute the function of the wild-type protein. Fractionation of intact chloroplasts from these transgenic plants suggests that most or all of the fusion protein is tightly associated with the thylakoid membrane. Our data show that the identified factor is a novel protein that could be involved in a post-translational step during biogenesis of the cytochrome b(6)f complex. It is also possible that HCF153 is necessary for translation of one of the very small subunits of the cytochrome b(6)f complex.  相似文献   

3.
Cytochrome (cyt) b-c complexes play a central role in electron transfer chains and are almost ubiquitous in nature. Although similar in their basic structure and function, the cyt b(6)f complex of photosynthetic membranes and its counterpart, the mitochondrial cyt bc(1) complex, show some characteristic differences which cannot be explained by the high resolution structure of the cyt bc(1) complex alone. Especially the presence of a chlorophyll molecule is a striking feature of all cyt b(6)f complex preparations described so far, imposing questions as to its structural and functional role. To allow a more detailed characterization, we here report the preparation of native subunits cyt b(6) and IV starting from a monomeric cyanobacterial cyt b(6)f complex. Spectroscopical and reversed-phase HPLC analyses of the purified cyt b(6) subunit showed that it contained not only two b-type hemes, but also one chlorophyll a molecule and a cyanobacterial carotenoid, echinenone. Evidence for selective binding of both pigments to this subunit is presented and their putative function is discussed.  相似文献   

4.
The availability of the structures of the cytochrome b6f complex (cyt b6f), plastocyanin (PC), and cytochrome c6 (cyt c6) from Chlamydomonas reinhardtii allowed us, for the first time, to model electron transfer interactions between the luminal domains of this complex (including cyt f and the Rieske FeS protein) and its redox partners in the same species. We also generated a model structure in which the FeS center of the Rieske protein was positioned closer to the heme of cyt f than observed in the crystal structure and studied its interactions with both PC and cyt c6. Our data showed that the Rieske protein in both the original crystal structure and in our modeled structure of the cyt b6f complex did not physically interfere with binding position or orientation of PC or cyt c6 on cyt f. PC docked on cyt f with the same orientation in the presence or the absence of the Rieske protein, which matched well with the previously reported NMR structures of complexes between cyt f and PC. When the FeS center of the Rieske protein was moved close to the heme of cyt f, it even enhanced the interaction rates. Studies using a cyt f modified in the 184-191 loop showed that the cyt f structure is a more important factor in determining the rate of complex formations than is the presence or the absence of the Rieske protein or its position with respect to cyt f.  相似文献   

5.
The pgr1 mutant of Arabidopsis thaliana carries a single point mutation (P194L) in the Rieske subunit of the cytochrome b6/f (cyt b6/f) complex and is characterised by a reduced electron transport activity at saturating light intensities in vivo. We have investigated the electron transport in this mutant under in vitro conditions. Measurements of P700 reduction kinetics and of photosynthetic electron transport rates indicated that electron transfer from cyt b6/f to photosystem I is not generally reduced in the mutant, but that the pH dependence of this reaction is altered. The data imply that the pH-dependent inactivation of electron transport through cyt b6/f is shifted by about 1 pH unit to more alkaline pH values in pgr1 thylakoids in comparison with wild-type thylakoids. This interpretation was confirmed by determination of the transmembrane deltapH at different stromal pH values showing that the lumen pH in pgr1 mutant plants cannot drop below pH 6 reflecting most likely a shift of the pK and/or the redox potential of the oxidised Rieske protein.  相似文献   

6.
Cytochromes bc1/b6f complexes catalyze electron transfer from lipid- to water-soluble carriers in both the respiratory and photosynthetic processes. They contain several common redox cofactors, while a chlorophyll a molecule, the function of which is still enigmatic, is only present in b b6f-type complexes. In this work, we describe a mutagenesis approach aimed at characterizing the role of this pigment. Mutants of the binding pocket were constructed to obtain cytochrome (cyt) b6f f complexes altered in chlorophyll position and/or stability. On the basis of a combined biochemical and functional analysis, we conclude that the chlorophyll plays a major structural role in the complex. Moreover, the chlorophyll and its binding pocket may also be implicated in the regulation of photosynthetic state transitions, a function that is specific to cyt b6f complexes.  相似文献   

7.
Hou CX  Rintamäki E  Aro EM 《Biochemistry》2003,42(19):5828-5836
A freeze-thaw cycle of isolated thylakoids in darkness in the presence of ascorbate was employed as a novel experimental system to activate the light-harvesting complex (LHC) II kinase. Under these conditions ascorbate reduces Q(A), the primary quinone electron acceptor of photosystem (PS) II, and the subsequent reduction of plastoquinone and the cytochrome (cyt) b(6)f complex results in the activation of the LHCII kinase. Using this activation system, several facets of regulation of LHCII protein phosphorylation were unravelled. (i) Myxothiazol inhibited the activation of LHCII protein phosphorylation, thus being a potent inhibitor of electron flow not only in cyt bc complexes but in darkness also in cyt b(6)f complexes. (ii) Oxygen, the only electron acceptor in darkness, was required for LHCII kinase activation demonstrating that after a full reduction of the cyt b(6)f complex, an additional plastoquinol oxidation cycle in the quinol oxidation (Qo) site is required for LHCII kinase activation. (iii) In the absence of electron flow, when the intersystem electron carriers are reduced, the activated LHCII kinase has a half-life of 40 min, whereas the fully activated LHCII kinase becomes deactivated in a time scale of seconds upon oxidation of the cyt b(6)f complex, indicating that the kinase constantly reads the redox poise of the cyt b(6)f complex. (iv) The LHCII kinase is more tightly bound to the thylakoid membrane than the PS II core protein kinase(s). It is concluded that oxidation of plastoquinol at the Qo site of the reduced cyt b(6)f complex is required for LHCII kinase activation, while rapid reoccupation of the Qo site with plastoquinol is crucial for sustenance of the active state of the LHCII kinase.  相似文献   

8.
Roberts AG  Bowman MK  Kramer DM 《Biochemistry》2004,43(24):7707-7716
Previously [Roberts, A. G., and Kramer, D. M. (2001) Biochemistry 40, 13407-13412], we showed that 2 equiv of the quinone analogue 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) could occupy the Q(o) site of the cytochrome (cyt) b(6)f complex simultaneously. In this work, a study of electron paramagnetic resonance (EPR) spectra from the oriented cyt b(6)f complex shows that the Rieske iron-sulfur protein (ISP) is in distinct orientations, depending on the stoichiometry of the inhibitor at the Q(o) site. With a single DBMIB at the Q(o) site, the ISP is oriented with the 2Fe-2S cluster toward cyt f, which is similar to the orientation of the ISP in the X-ray crystal structure of the cyt b(6)f complex from thermophilic cyanobacterium Mastigocladus laminosus in the presence of DBMIB, as well as that of the chicken mitochondrial cyt bc(1) complex in the presence of the class II inhibitor myxothiazol, which binds in the so-called "proximal niche", near the cyt b(L) heme. These data suggest that the high-affinity DBMIB site is at the proximal niche Q(o) pocket. With >or=2 equiv of DBMIB bound, the Rieske ISP is in a position that resembles the ISP(B) position of the chicken mitochondrial cyt bc(1) complex in the presence of stigmatellin and the Chlamydomonas reinhardtii cyt b(6)f complex in the presence of tridecylstigmatellin (TDS), which suggests that the low-affinity DBMIB site is at the distal niche. The close interaction of DBMIB bound at the distal niche with the ISP induced the well-known effects on the 2Fe-2S EPR spectrum and redox potential. To further test the effects of DBMIB on the ISP, the extents of cyt f oxidation after flash excitation in the presence of photosystem II inhibitor DCMU were measured as a function of DBMIB concentration in thylakoids. Addition of DBMIB concentrations at which a single binding was expected did not markedly affect the extent of cyt f oxidation, whereas higher concentrations, at which double occupancy was expected, increased the extent of cyt f oxidation to levels similar to that of cyt f oxidation in the presence of a saturating concentration of stigmatellin. Simulations of the EPR g-tensor orientations of the 2Fe-2S cluster versus the physical orientations based on single-crystal studies of the cyt bc(1) complex suggest that the soluble ISP domain of the spinach cyt b(6)f complex can rotate by at least 53 degrees, which is consistent with long-range ISP domain movement. Implications of these results are discussed in the context of the X-ray crystal structures of the chicken mitochondrial cyt bc(1) complex and the M. laminosus and C. reinhardtii cyt b(6)f complexes.  相似文献   

9.
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 alphabeta subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The alpha one was formylated at its N-terminal residue and the N-terminal methionine of beta was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the alpha polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the alpha polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension.  相似文献   

10.
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 αβ subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The α one was formylated at its N-terminal residue and the N-terminal methionine of β was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the α polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the α polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension.  相似文献   

11.
To understand the biogenesis of the plastid cytochrome b(6)f complex and to identify the underlying auxiliary factors, we have characterized the nuclear mutant hcf164 of Arabidopsis and isolated the affected gene. The mutant shows a high chlorophyll fluorescence phenotype and is severely deficient in the accumulation of the cytochrome b(6)f complex subunits. In vivo protein labeling experiments indicated that the mutation acts post-translationally by interfering with the assembly of the complex. Because of its T-DNA tag, the corresponding gene was cloned and its identity confirmed by complementation of homozygous mutant plants. HCF164 encodes a thioredoxin-like protein that possesses disulfide reductase activity. The protein was found in the chloroplast, where it is anchored to the thylakoid membrane at its lumenal side. HCF164 is closely related to the thioredoxin-like protein TxlA of Synechocystis sp PCC6803, most probably reflecting its evolutionary origin. The protein also shows a limited similarity to the eubacterial CcsX and CcmG proteins, which are required for the maturation of periplasmic c-type cytochromes. The putative roles of HCF164 for the assembly of the cytochrome b(6)f complex are discussed.  相似文献   

12.
G Howe  S Merchant 《The EMBO journal》1992,11(8):2789-2801
Cytochrome c6 functions in the thylakoid lumen to catalyze electron transfer from reduced cytochrome f of the cytochrome b6f complex to P700+ of photosystem I. The biogenesis of mature cyt c6 from cytosolically translated pre-apocytochrome c6 involves numerous post-translational modifications including the proteolytic removal of a transit sequence and the covalent attachment of heme to two cysteinyl thiols on the apoprotein. Here, we report on the characterization of a previously unrecognized class of non-allelic mutants of Chlamydomonas reinhardtii that are blocked at the conversion of apocyt c6 to holocyt c6. The mutants are acetate requiring since they are also deficient in cyt f, cyt b and the Rieske FeS protein. Pulse-chase studies indicate that heme attachment is not required for the two-step processing of pre-apocytochrome c6 to apocyt c6, but is required for the stability of the mature protein. This is in contrast to the biosynthesis of mitochondrial cyt c1 where heme attachment is required for the second processing step. We propose that the assembly of both holocytochrome c6 and the cytochrome b6f complex are dependent on common gene products, possibly those involved in heme delivery or metabolism. This is the first suggestion that multiple loci are involved in the biosynthesis of both plastidic c-type cytochromes.  相似文献   

13.
The kinetics and amplitude of the membrane potential changes associated with electron and proton transfers within the cytochrome b(6)/f (cyt b/f) complex (phase b) are measured in vivo in Chlamydomonas reinhardtii under anaerobic conditions. Upon saturating flash excitation, fast components in the membrane potential decay superimposed on phase b lead to an underestimation of the amplitude of this phase. In the FUD50 mutant strain, which lacks the ATP synthase, the decay of the membrane potential is slowed down compared to the wild type, and the kinetics and amplitude of phase b may be accurately determined. This amplitude corresponds to the transfer of at least 1.5 charges across the membrane per positive charge transferred to photosystem I, whatever the flash energy. This value largely exceeds that predicted by a Q-cycle process. Similar conclusions are reached using the wild type strain in the presence of 9 microM dicyclohexylcarbodiimide, which specifically inhibits the ATP synthase. It is concluded that a proton pumping process is operating in parallel with the Q-cycle, with a yield of approximately 0.5 proton pumped by cyt b/f complex turnover, irrespective of the flash energy.  相似文献   

14.
Structural alignment of the integral cytochrome b6-SU IV subunits with the solved structure of the mitochondrial bc1 complex shows a pronounced asymmetry. There is a much higher homology on the p-side of the membrane, suggesting a similarity in the mechanisms of intramembrane and interfacial electron and proton transfer on the p-side, but not necessarily on the n-side. Structural differences between the bc1 and b6f complexes appear to be larger the farther the domain or subunit is removed from the membrane core, with extreme differences between cytochromes c1 and f. A special role for the dimer may involve electron sharing between the two hemes b(p), which is indicated as a probable event by calculations of relative rate constants for intramonomer heme b(p) --> heme b(n), or intermonomer heme b(p) --> heme b(p) electron transfer. The long-standing observation of flash-induced oxidation of only approximately 0.5 of the chemical content of cyt f may be partly a consequence of the statistical population of ISP bound to cytfon the dimer. It is proposed that the p-side domain of cyt f is positioned with its long axis parallel to the membrane surface in order to: (i) allow its large and small domains to carry out the functions of cyt c1 and suVIII, respectively, of the bc1 complex, and (ii) provide maximum dielectric continuity with the membrane. (iii) This position would also allow the internal water chain ("proton wire") of cyt f to serve as the p-side exit port for an intramembrane H+ transfer chain that would deprotonate the semiquinol located in the myxothiazol/MOA-stilbene pocket near heme b(p). A hypothesis is presented for the identity of the amino acid residues in this chain.  相似文献   

15.
16.
17.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

18.
The lumen segment of cytochrome f consists of a small and a large domain. The role of the small domain in the biogenesis and stability of the cytochrome b(6)f complex and electron transfer through the cytochrome b(6)f complex was studied with a small domain deletion mutant in Chlamydomonas reinhardtii. The mutant is able to grow photoautotrophically but with a slower rate than the wild type strain. The heme group is covalently attached to the polypeptide, and the visible absorption spectrum of the mutant protein is identical to that of the native protein. The kinetics of electron transfer in the mutant were measured by flash kinetic spectroscopy. Our results show that the rate for the oxidation of cytochrome f was unchanged (t(12) = approximately 100 micros), but the half-time for the reduction of cytochrome f is increased (t(12) = 32 ms; for wild type, t(12) = 2.1 ms). Cytochrome b(6) reduction was slower than that of the wild type by a factor of approximately 2 (t(12) = 8.6 ms; for wild type, t(12) = 4.7 ms); the slow phase of the electrochromic band shift also displayed a slower kinetics (t(12) = 5.5 ms; for wild type, t(12) = 2.7 ms). The stability of the cytochrome b(6)f complex in the mutant was examined by following the kinetics of the degradation of the individual subunits after inhibiting protein synthesis in the chloroplast. The results indicate that the cytochrome b(6)f complex in the small domain deletion mutant is less stable than in the wild type. We conclude that the small domain is not essential for the biogenesis of cytochrome f and the cytochrome b(6)f complex. However, it does have a role in electron transfer through the cytochrome b(6)f complex and contributes to the stability of the complex.  相似文献   

19.
20.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号