首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Five of the 30S ribosomal proteins from E. coli were tested for their ability to bind to 16S ribosomal RNA. Only one of these, S15, can form a complex with the RNA. Quantitative measurements as well as competition experiments show that the RNA binding site for the attachment of S15 is specific for this protein.These experiments complete our analysis of all 21 of the 30S ribosomal proteins. Five of these have now been shown to form a site-specific complex with 16S RNA. These are S4, S7, S8, S15 and S20. The relationship of these data to the assembly and structure of the ribosome are discussed.  相似文献   

2.
3.
A method of preparing 16 S RNA has been developed which yields RNA capable of binding specifically at least 12, and possibly 13, 30 S ribosomal proteins. This RNA, prepared by precipitation from 30 S subunits using a mixture of acetic acid and urea, is able to form stable complexes with proteins S3, S5, S9, S12, S13, S18 and possibly S11. In addition, this RNA has not been impaired in its capacity to interact with proteins S4, S7, S8, S15, S17 and S20, which are proteins that most other workers have shown to bind RNA prepared by the traditional phenol extraction procedure (Held et al., 1974; Garrett et al., 1971; Schaup et al., 1970,1971).We have applied several criteria of specificity to the binding of proteins to 16 S RNA prepared by the acetic acid-urea method. First, the new set of proteins interacts only with acetic acid-urea 16 S RNA and not with 16 S RNA prepared by the phenol method or with 23 S RNA prepared by the acetic acid-urea procedure. Second, 50 S ribosomal proteins do not interact with acetic acidurea 16 S RNA but do bind to 23 S RNA. Third, in the case of protein S9, we have shown that the bound protein co-sediments with acetic acid-urea 16 S RNA in a sucrose gradient. Additionally, a saturation binding experiment showed that approximately one mole of protein S9 binds acetic acid-urea 16 S RNA at saturation. Thus, we conclude that the method employed for the preparation of 16 S RNA greatly influences the ability of the RNA to form specific protein complexes. The significance of these results is discussed with regard to the in vitro assembly sequence.  相似文献   

4.
Summary The formation of a complex between individual 30S ribosomal proteins and 16S ribosomal RNA was studied by three techniques: zone centrifugation, molecular-sieve chromatography and electrophoresis in polyacrylamide gels. Five 30S proteins form a stable complex with the RNA under the conditions used to assemble ribosomes. Specific and nonspecific complex formation can be distinguished by an analysis of the concentration-dependence for complex formation. Similarly, competition experiments between heterologous proteins that bind to RNA can also be used to establish the uniquness of the RNA binding sites for ribosomal proteins. The data show that four of the five proteins bind to unique sites on the RNA. The fifth protein binds nonspecifically to the RNA. In addition, cooperative interactions between several proteins were observed; these enhance the interaction of proteins with the 16S RNA. A partial assembly sequence for the 30S ribosomal subunit is presented.  相似文献   

5.
Summary A portion of the 16S ribosomal RNA that binds specifically to, and is protected from nucleolytic attack by, ribosomal protein S4 has been characterized in terms of its partial primary structure. The specific RNA (S4aR) in question comprises slightly more than onefourth of the full 16S molecule, and appears to be located (at least in part) in the 5-proximal half of the molecule. The functional significance of S4aR is discussed.  相似文献   

6.
We have previously investigated the role of the N-terminal region of ribosomal protein S4 to participate in 30S ribosome assembly and function (1-3). In this report we extend these studies to the two fragments produced by the chemical cleavage of protein S4 at the tryptophan residue 167. We find that the carboxyl terminal fragment (168-203) does not bind 16S RNA nor does it participate in assembly with the other 20 proteins from the 30S ribosome. In contrast, the larger fragment (1-167), does bind 16S RNA specifically. If the S4-fragment (1-167) is used to replace protein S4 in the complete 30S assembly reaction, all 20 of the other 30S proteins are incorporated. We conclude that the carboxyl terminal section of the protein S4 is not directly involved in binding 16S RNA or in the assembly of any of the other 30S proteins.  相似文献   

7.
The effect of T4 phage on ribosomes in terms of their ability to bind RNA viral template is examined. It is found that the 30S subunits of T4 ribosomes bind MS2 RNA as efficiently as do the subunits of uninfected E. coli ribosomes. On the other hand, analyses of the formation of 70S initiation complex, presumably from MS2 RNA-30S ribosome complex, using both labeled MS2 RNA and initiator tRNA, reveal that T4 ribosomes are only about half as active as E. coli ribosomes. The latter phenomenon has been reported previously. These results suggest that, following T4 infection, ribosomes are modified in such a way that the attachment of fMet-tRNAf to MS2 RNA-30S subunit complex is impaired.  相似文献   

8.
Mutant Ribosomal Protein with Defective RNA Binding Site   总被引:5,自引:0,他引:5  
THE 30S ribosomal subunits of Escherichia coli contain twenty-one different proteins1–4, which together with 16S RNA can reassemble in vitro to form functional 30S particles5. Five proteins can individually bind to specific sites on the 16S RNA6–8 and these are S4, S7, S8, S15 and S20 (in the nomenclature recently adopted by several laboratories to report results with the E. coli system9). We report here the first identification of a mutation that affects a ribosomal protein-nucleic acid interaction.  相似文献   

9.
The deoxyoctanucleotide 5'd (AAGGAGGT) which is complementary to the 3' terminus of 16S RNA has been used as a probe to measure the potential of this rRNA region to engage in intermolecular basepairing. The site specific binding of the octanucleotide is shown by labeling 16S RNA in situ at its 3' end with [32P]pCp and T4 RNA ligase (EC 6.5.1.3.). The label can be released as pA[32P]pCp by the simultaneous action of RNAse H (EC 3.1.4.34) and 5'd(AAGGAGGT). WE show that (1) 30S subunits prepared according to standard procedures, bind less than one copy of 5'd(AAGGAGGT); (2) isolated 16S RNA and 30S subunits inactivated by transcient exposure to 0.5 mM Mg2+ do not bind the octanucleotide; (3) binding to inactive subunits can be restored by a brief heat treatment; (4) 30S subunits lacking protein S21 do not bind 5'd(AAGGAGGT) even when submitted to heat treatment; (5) addition of protein S21 to subunits lacking S21 restores octamer binding; (6) the apparent exposure of the 16S RNA 3' terminus brought about by protein S21 is accompanied by the potential of the subunits to accept MS2 RNA as messenger; (7) the presence or absence of S1 on 30S subunits has no effect on their octanucleotide binding property.  相似文献   

10.
Our previous studies have shown that 16 S RNA can assume two different conformational forms as detected by agarose gel electrophoresis, and that these two forms vary in their ability to bind individual 30 S ribosomal proteins specifically. In this paper we show that the faster electrophoretic form can be converted to the slower electrophoretic form by the binding of either protein S4, S8, S7 or S15. The slower form can then be transformed into a fast form by heat-activating the reconstitution intermediate (RI) particle, which has been constructed under reconstitution conditions at 0 °C, to RI1. We demonstrate that the transformation of the 16 S RNA conformation by binding of protein S7 permits the subsequent binding of protein S9 following deproteination. We propose that many of the classical assembly-dependent relationships are due to induced changes in the 16 S RNA conformation.  相似文献   

11.
30S ribosomal protein S4 contains a single cysteine residue at position 31. We have selectively cleaved the peptide bond adjacent to this residue using the reagent 2-nitro-5-thiocyanobenzoic acid. The two resultant fragments were purified. The smaller S4-fragment (1-30) was found to be incapable of interacting with 16S RNA directly. This fragment also is not incorporated into a particle reconstituted from 16S RNA and 20 purified proteins with S4 missing. In contrast, the large S4-fragment (31-203) appears to be fully functional in ribosome assembly. Replacement of S4 with this fragment in the reconstitution reaction leads to a complete 30S ribosome containing all 30S proteins. This particle has a full capacity to bind poly U but has lost all activity for poly U directed phe-tRNA binding. We therefore propose that the N-terminus of protein S4 is not critical for ribosome assembly but is essential for tRNA binding.  相似文献   

12.
SYNOPSIS. Crithidia fasciculata ribosomes were found to be 80S and to dissociate into 58 and 41S subunits; on 5 to 50% sucrose gradients, rRNA was separated into 25, 18, and 5S components. The molecular sizes of the heavier rRNA species, estimated by polyacrylamide gel electrophoresis were 1.24 and 0.84 M (×106 daltons). The 25S RNA has a tendency to interact with the 18S RNA to give a complex that is difficult to separate by sucrose gradient centrifugation. The 25S RNA is also unstable and dissociates into 0.73 and 0.57 M components. The 18S RNA has molecular size (0.84 M) higher than the 0.7 M reported for most eukaryotes, but similar to that of Euglena and Amoeba. Ribosomal RNA hybridized 0.29% of the nuclear DNA. Mitochondrial RNA, extracted by a rapid procedure was resolved into 16 and 5S components in sucrose gradients.  相似文献   

13.
Proteins S4, S16/S17 and S20 of the 30 S ribosomal subunit of Escherichia coli+ associate with specific binding sites in the 16 S ribosomal RNA. A systematic investigation of the co-operative interactions that occur when two or more of these proteins simultaneously attach to the 16 S RNA indicate that their binding sites lie near to one another. The binding site for S4 has previously been located within a 550-nucleotide RNA fragment of approximately 9 S that arises from the 5′-terminal portion of the 16 S RNA upon limited hydrolysis with pancreatic ribonuclease. The 9 S RNA was unable to associate with S20 and S16/S17, however, either alone or in combination. A fragment of similar size and nucleotide sequence, termed the 9 S1 RNA, has been isolated following ribonuclease digestion of the complex of 16 S RNA with S20 and S16/S17. The 9 S1 RNA bound not only S4, but S20 and S16/S17 as well, although the fragment complex was stable only when both of the latter protein fractions were present together. Nonetheless, measurements of binding stoichiometry demonstrated the interactions to be specific under these conditions. A comparison of the 9 S and 9 S1 RNAs by electrophoresis in polyacrylamide gels containing urea revealed that the two fragments differ substantially in the number and distribution of hidden breaks. Contrary to expectation, the RNA in the ribonucleoprotein complex appeared to be more accessible to ribonuclease than the free 16 S RNA as judged by the smaller average length of the sub-fragments recovered from the 9 S1 RNA. These results suggest that the binding of S4, S16/S17 and S20 brings about a conformational alteration within the 5′ third of the 16 S RNA.To delineate further the portions of the RNA chain that interact with S4, S16/S17 and S20, specific fragments encompassing subsequences from the 5′ third of the 16 S RNA were sought. Two such fragments, designated 12 S-I and 12 S-II, were purified by polyacrylamide gel electrophoresis from partial T1 ribonuclease digests of the 16 S RNA. The two RNAs, which contain 290 and 210 nucleotides, respectively, are contiguous and together span the entire 5′-terminal 500 residues of the 16 S RNA molecule. When tested individually, neither 12 S-I nor 12 S-II bound S4, S16/S17 or S20. If heated together at 40 °C in the presence of Mg2+ ions, however, the two fragments together formed an 8 S complex which associated with S4 alone, with S16/S17 + S20 in combination, and with S4 + S16/S17 + S20 when incubated with an un fractionated mixture of 30 S subunit proteins. These results imply that each fragment contains part of the corresponding binding sites.  相似文献   

14.
Ribosomal proteins   总被引:1,自引:0,他引:1  
Summary The number of specific binding sites for homogenous single ribosomal proteins on 16S E. coli ribosomal RNA was investigated. The capacity of each of the twenty-one 30S subunit proteins to bind to the RNA was estimated by two newly developed methods, namely immunoprecipitation and a polyacrylamide gel method. Five proteins, namely S4, S7, S8, S15 and S20 bound specifically. One, S17, bound nonspecifically. No binding of the other proteins was detected. The binding proteins bound simultaneously to the RNA, with stimulated binding of proteins S7 and S8. Evidence is provided for the similarity of the chemistry of the binding sites of the binding proteins in Escherichia coli and in Bacillus stearothermophilus ribosomes.  相似文献   

15.
We have described previously the isolation of a large fragment of 30 S ribosomal protein S4 (Changchien &; Craven, 1976). This S4-fragment is produced by the digestion of the S4–16S RNA complex with trypsin and it retains a full capacity to associate specifically with 16S RNA. It was also demonstrated that the S4-fragment has approximately 46 amino acid residues missing from the N-terminus and an intact C-terminus (also shown by Newberry et al., 1977). Preliminary experiments with this S4-fragment indicated that it could not fully replace the intact protein S4 in the process of 30 S ribosome assembly in vitro.We have also recently reported (Changchien et al., 1978) the preparation of a new fragment of protein S4 which has only 30 amino acid residues cleaved from the N-terminus. This was achieved by the use of the reagent 2-nitro-5-thiocyanobenzoic acid which selectively modifies the cysteine residue at position 31 followed by a cleavage of the adjacent peptide bond.We have now fully characterized the capacity of these two fragments, S4-fragment (47–203) and S4-fragment(31–203), to participate in the 30 S ribosome assembly process in vitro. Using 2-dimensional polyacrylamide gel electrophoresis, we find that when S4-fragment(47–203) is a component of the in vitro assembly reaction, proteins S1, S2, S10, S18 and S21 fail to become incorporated into the final particle. In contrast, S4-fragment(31–203) appears to participate in the reconstitution reaction without impairment allowing the complete incorporation of all 20 proteins of the 30 S subunit. The resultant particle, containing the S4-fragment (31–203), is fully active in the binding of poly(U), but is completely inactive for non-enzymatic poly(U)-directed binding of Phe-tRNA (Changchien et al., 1978). These results suggest that residues 1 through 30 of protein S4 are not involved in the assembly of the 30 S ribosome, but are required for the proper construction of the tRNA binding site. In addition residues 31 through 46 must be somehow critically important for the assembly of proteins S1, S2, S10, S18 and S21. We present evidence to show that the absence of residues 31 through 46 of protein S4 prevents a conformational change in the structure of 16 S RNA which normally accompanies the RI to RI transition and that this results in the inability of these proteins to participate in the assembly process.  相似文献   

16.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

17.
18.
The direct assays on Biacore with immobilised RRF and purified L11 from E. coli in the flow trough have shown unspecific binding between the both proteins. The interaction of RRF with GTPase domain of E. coli ribosomes, a functionally active complex of L11 with 23S r RNA and L10.(L7/L12)4 was studied by Biacore. In the experiments of binding of RRF with 30S, 50S and 70S ribosomes from E. coli were used the antibiotics thiostrepton, tetracycline and neomycin and factors, influencing the 70S dissociation Mg2+, NH4Cl, EDTA. The binding is strongly dependent from the concentrations of RRF, Mg2+, NH4Cl, EDTA and is inhibited by thiostrepton. The effect is most specific for 50S subunits and indicates that the GTPase centre can be considered as a possible site of interaction of RRF with the ribosome. We can consider an electrostatic character of the interactions with most probable candidate 16S and 23S r RNA at the interface of 30S and 50S ribosomal subunits.  相似文献   

19.
20.
We have found that E. coli ribosomal protein S13 recognizes multiple sites on 16S RNA. However, when protein S19 is included with a mixture of proteins S4, S7, S8, S16/S17 and S20, the S13 binds to the complex with measurably greater strength and with a stoichiometry of 1.5 copies per particle. This suggests that the protein may have two functional domains. We have tested this idea by cleaving the protein into two polypeptides. It was found that one of the fragments, composed of amino acid residues 84-117, retained the capacity to bind 16S RNA at multiple sites. Protein S19 had no affect on the strength or stoichiometry of the binding of this fragment. These data suggest that S13 has a C-terminal domain primarily responsible for RNA recognition and possibly that the N-terminal region is important for association with protein S19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号