首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallothioneins (MTs) have been widely considered for their potential use as specific biomarkers to reflect the existence of heavy metal pollution, because their induction has been observed to be obviously elevated after heavy metal exposure in a large number organism studied. However, relatively fewer efforts have been made in MT-related studies of prawn species, such as the white shrimp Litopenaeus vannamei, a globally important aquaculture species. With the results from gel filtration chromatography, we demonstrate the existence of MTs or MT-like proteins in L.vannamei. We further studied the relationship between MT induction and metals accumulation after long-term exposure to the heavy metals Cd and Zn. From our results, it is very clear that the response of L. vannamei to Cd differs from that to Zn, and this should be considered when using MTs in field applications to monitor metals contamination.  相似文献   

2.
Analysis of type 1 metallothionein cDNAs in Vicia faba   总被引:7,自引:0,他引:7  
  相似文献   

3.
Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.  相似文献   

4.
The presence of MTs in marine molluscs was firstly hypothesized in oyster and in mussel during the seventies, however mussel's and oysters' MTs were completely purified and sequenced rather later. Already from the first studies it was evident that the purification of molluscan MTs was more difficult than in mammals. Mussel's MTs are characterized by the presence of a monomeric and a dimeric form. Several physiological and biochemical parameters can influence the concentration and the isolation of MT from molluscan tissues. Remarkable variations in MT isolation and quantification might depend on the purification and storage protocol. Because of possible artefacts due to the isolation procedure the establishment of a standard protocol for MT quantification in marine mollusc is still an important goal. In a few species the presence of very low molecular weight metal binding ligands has also been reported, in these cases it cannot be excluded that the native MT has been cleaved by the action of proteases. This review aims to report: 1) importance of a standard method for MT purification and quantification in molluscs; 2) distribution of MT among molluscan species; 3) data concerning oyster's and mussel's MTs which are the two more deeply investigated marine molluscs; 4) biotic and abiotic factors influencing MT concentration, and 5) biological role of MT and use of MT as a biochemical marker of heavy metal pollution.  相似文献   

5.
Metallothioneins (MTs) were induced in Chang liver cells by the metals, Zn, Cu and Cd, and the glucocorticoid hormone, dexamethasone. When 116 microM Zn, 32 microM Cu and 18 microM Cd, and 10(-7) M dexamethasone, respectively, were administered for 9 h, MTs induced by each inducer in the cells reached maximum levels. The maximum accumulation of MT level induced by dexamethasone was the lowest of the four inducers investigated; the levels induced by Zn, Cu and Cd were 4.7, 1.2 and 1.5 times of that induced by dexamethasone. When dexamethasone was added to the cells together with the heavy metals (Zn, Cu and Cd), dexamethasone had an additive effect on the maximum MT accumulations induced by heavy metals as compared to when induction was conducted using one of heavy metals alone or by dexamethasone alone. However, dexamethasone did almost not effect the metal accumulations in the cells, although the maximum MT levels induced by heavy metal increased by dexamethasone. These results suggest that the process of MT induction by heavy metals and that by dexamethasone are independent of one another. When dexamethasone was added to the cells together with a high concentration of Cu (32 microM) induced the maximum MT accumulation, Cu transport into the cells decreased by 20-40% of that into non-treated cells, which was statistically significant.  相似文献   

6.
Erratum     
The biochemical features of metallothioneins and their functional role in the cell are described. On this basis, the potential role of MTs as a biomarker of exposure in aquatic organisms, such as fishes and molluscs, is evaluated in the light of recent knowledge about MT gene regulation and inducibility. It appears that in fish MTs should be considered as a kind of stress protein which is particularly responsive to heavy metals. In molluscs, in particular in mussels, MTs seem more specifically involved in responses to heavy metals and they should therefore be considered a biomarker of exposure to heavy metal pollution. Common techniques for MT evaluation are listed and a simple spectrophotometric method recently developed is also reported. Finally, the correct approach to the use of MTs as a biomarker of exposure in biomonitoring programmes for an assessment of the physiological status of aquatic organisms is discussed.  相似文献   

7.
Metallothionein as a tool in biomonitoring programmes   总被引:4,自引:0,他引:4  
The biochemical features of metallothioneins and their functional role in the cell are described. On this basis, the potential role of MTs as a biomarker of exposure in aquatic organisms, such as fishes and molluscs, is evaluated in the light of recent knowledge about MT gene regulation and inducibility. It appears that in fish MTs should be considered as a kind of stress protein which is particularly responsive to heavy metals. In molluscs, in particular in mussels, MTs seem more specifically involved in responses to heavy metals and they should therefore be considered a biomarker of exposure to heavy metal pollution. Common techniques for MT evaluation are listed and a simple spectrophotometric method recently developed is also reported. Finally, the correct approach to the use of MTs as a biomarker of exposure in biomonitoring programmes for an assessment of the physiological status of aquatic organisms is discussed.  相似文献   

8.
This work aimed to validate the relationship between metallothioneins (MTs) and metals (Cd, Cu and Zn) in field conditions. Specimens of the marine bivalve Ruditapes decussatus (Linné, 1758) from Gargour were transferred in two sites: Gargour and Sidi Mansour, both situated along the south-eastern coast of Tunisia. The bivalves were removed from pairs of cages at day 0 (date of transplantation), day 62 and day 132. Metals (Cd, Cu and Zn) and MTs were determined in the subcellular fractions of the digestive gland. In Gargour, metal and MT levels increased significantly after 62 days of transplantation. However, they showed modest and non-significant variations in Sidi Mansour. Zn was mainly associated with the insoluble fraction, whereas Cd and Cu percentages in the soluble and the insoluble fractions were equivalent. Simple correlation analysis showed a positive and significant relationship between MTs and each metal. If all metals were taken together, multiple correlations showed that MTs were significantly correlated with Cd and Zn, with an important coefficient for Cd, but no significant relationship was observed for Cu. Gel filtration chromatography showed that in the heat stable fraction, the only cytosolic SH rich compounds have an apparent low molecular mass (about 15 kDa), which could correspond to metallothioneins. In the digestive gland of R. decussatus MTs responded to moderate increases of metal contamination, without interference with other factors, and could be a promising biochemical indicator of metal exposure.  相似文献   

9.
In order to demonstrate the in vivo antioxidant properties of metallothioneins (MTs), the bacteria Escherichia coli was used as a cell reactor in which we compared the metal binding and antioxidative functions of MTs from different species, with different structures and polypeptide lengths. No protective effects of cytoplasmic MTs from cadmium (Cd) or zinc (Zn) contamination were observed in a wild-type E. coli strain, although these MTs can efficiently bind both Cd and Zn. To test their antioxidant properties, MTs were expressed within the cytoplasm of a sodA sodB deficient mutated strain (QC1726). However, a paradoxical MT toxicity was found when this strain was contaminated with Cd and Zn, suggesting that in a wild-type strain, superoxide dismutase counteracts MT toxicity. The most toxic MT was the one with the strongest Cd and Zn binding capacities. This toxic effect was linked to the generation of superoxide radicals, since a Cd-contaminated QC1726 strain expressing oyster MT isoforms produced 75-85% more O(2)*(-) than the control QC1726 strain. Conversely, under anaerobiosis or in the presence of a copper chelator, MTs protected QC1726 strain from Cd and Zn contamination. A model is proposed to explain the observed MT toxicity.  相似文献   

10.
Metallothioneins (MTs) are low molecular weight, cysteine-rich proteins that bind heavy metals. MT induction occurs in liver in response to either heavy metal (Zn++ or Cd++) administration or stress. The synthesis of MT can also be induced by either heavy metals or glucocorticoid hormones in HeLa cells cultured in serum-free medium. Induction of MT by zinc is subject to "desensitization." In contrast, dexamethasone (dex) induction results in a continued elevation in the rate of MT synthesis. The stability of MT is dependent on the availability of metal; consequently, MT induced by dex is degraded much more rapidly (half-life of 11 to 12 hours) than MT induced by elevated zinc levels (half-life of 36 to 38 hours). Removal of either inducer results in biphasic degradation curves, as apothionein and zinc come into balance. In contrast, deinduction kinetics for MT synthesis following removal of the two inducers (zinc and dex) are the same, with a half-life of two and one-half hours. Inhibition of RNA synthesis blocks deinduction after removal of inducer. Induction of MT occurs in a wide variety of species, from blue-green algae to man. This system should provide an excellent model for the comparative biochemistry of regulation of gene expression.  相似文献   

11.
Metallothioneins (MTs) are ubiquitous proteins with the capacity to bind heavy metal ions (mainly Cd, Zn or Cu), and they have been found in animals, plants, eukaryotic and prokaryotic micro‐organisms. We have carried out a comparative analysis of ciliate MTs (Tetrahymena species) to well‐known MTs from other organisms, discussing their exclusive features, such as the presence of aromatic amino acid residues and almost exclusive cysteine clusters (CCC) present in cadmium‐binding metallothioneins (CdMTs), higher heavy metal‐MT stoichiometry values, and a strictly conserved modular–submodular structure. Based on this last feature and an extensive gene duplication, we propose a possible model for the evolutionary history of T. thermophila MTs. We also suggest possible functions for these MTs from consideration of their differential gene expressions and discuss the potential use of these proteins and/or their gene promoters for designing molecular or whole‐cell biosensors for a fast detection of heavy metals in diverse polluted ecosystems.  相似文献   

12.
13.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

14.
15.
Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd(2+), Cu(2+), Zn(2+) and Pb(2+), with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions.  相似文献   

16.
17.
In this study, we examined the expression of mammalian and fish metallothioneins (MTs) in Escherichia coli as a strategy to enhance metal biosorption efficiency of bacterial biosorbents for lead (Pb), copper (Cu), cadmium (Cd), and zinc (Zn). In addition, MT proteins were expressed in either the cytoplasmic or periplasmic compartment of host cells to explore the localization effect on metal biosorption. The results showed that MT expression led to a significant increase (5-210%) in overall biosorption efficiency (eta(ads)), especially for biosorption of Cd. The MT-driven improvement in metal biosorption relied more on the increase in the biosorption rates (r(2), a kinetic property) than on the equilibrium biosorption capacities (q(max), a thermodynamic property), despite a 10-45% and 30-80% increase in q(max) of Cd and Zn, respectively. Periplasmic expression of MTs appeared to be more effective in facilitating the metal-binding ability than the cytoplasmlic MT expression. Notably, disparity of the impacts on biosorption ability was observed for the origin of MT proteins, as human MT (MT1A) was the most effective biosorption stimulator compared to MTs originating from mouse (MT1) and fish (OmMT). Moreover, the overall biosorption efficiency (eta(ads)) of the MT-expressing recombinant biosorbents was found to be adsorbate-dependent: the eta(ads) values decreased in the order of Cd > Cu > Zn > Pb.  相似文献   

18.
19.
Quantification of metallothioneins (MTs) is classically associated with a cellular response to heavy metal contamination and is used in the monitoring of disturbed ecosystems. Despite the characterization of several MT genes in marine bivalves, only a few genetic studies have used MT genes as potential biomarkers of pollution. The aim of this study was to assess whether MT gene polymorphism could be used to monitor exposure of the Pacific oyster Crassostrea gigas to heavy metals and to develop specific genetic markers for population genetic studies in relation to environmental stress. The polymorphism of two exons of the C. gigas MT gene CgMT1 were studied using polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) in both field populations exposed to various metals concentrations and in experimentally exposed populations. High frequencies of two SSCP types in exons 2 and 3 of the CgMT1 gene have found to be significantly associated with tolerance to metals in experimental and field oyster populations. The use of MT1 gene polymorphism in C. gigas as in the present study should therefore be of high ecological relevance. In conclusion, the analysis of the types in these two CgMT1 gene exons, which can confer a greater tolerance to heavy metals, can constitute a good biomarker of effect of the presence of heavy metals in ecosystems.  相似文献   

20.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号