首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

2.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

3.
To study T cell tolerance, transgenic mice were generated that expressed the Mlsa-reactive T cell receptor (TCR) beta chain V beta 8.1 (cDNA) under the control of the H-2Kb promoter/immunoglobulin heavy chain enhancer on approximately 90% of peripheral T cells. In transgenic mice bearing Mlsa, thymocytes expressing the TCR at a high density were deleted and the percentage of Thy 1.2+ lymph node cells was reduced. The CD4/CD8 ratio of mature T cells was reversed in Mlsa and Mlsb transgenic mice independent of the H-2. RNA analysis and immunofluorescence with TCR V beta-specific antibodies revealed that expression of endogenous TCR beta genes was suppressed. Both Mlsa and Mlsb TCR beta chain transgenic mice mounted a T-cell-dependent IgG response against viral antigens, whereas the capacity to generate alloreactive and virus-specific cytotoxic T cells was impaired in TCR beta chain transgenic Mlsa, but not in transgenic Mlsb mice.  相似文献   

4.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

5.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

6.
The murine intraepithelial lymphocyte (IEL) population is enriched in T cells that express the gamma delta-TCR, however, the biologic function served by these T cells remains obscure. IEL are considered to be major effector cells in mucosal immunity, and we have investigated whether IEL subsets could reverse orally induced systemic unresponsiveness (oral tolerance; OT) and support secondary type responses when adoptively transferred to mice orally tolerized with SRBC. When purified CD3+ IEL from mice orally primed with SRBC were transferred to adoptive hosts and challenged with SRBC, splenic IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses were observed. However, CD3+ IEL from HRBC orally primed mice did not abrogate SRBC induced OT. Further, HRBC-primed CD3+, IEL converted HRBC-specific OT but not SRBC-specific OT. CD3+ IEL could be separated into four subsets based on expression of CD4 and CD8. CD3+, CD4-, 8+ T cells were the major subset (74.5%), with smaller numbers of CD4- and CD8- (double negatives, DN) (7.8%), CD4+, 8- (7.6%) and CD4+, CD8+ (double positives) (10.1%) T cells. Interestingly, both the CD3+, CD8+, and the CD3+, DN IEL subsets abrogated OT, resulting in significant IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses when adoptively transferred to mice with OT. However, neither CD3+, CD4+, CD8-, nor double positive T cells affected OT when studied in this system. The CD3+, CD8+ IEL subset could be further separated into Thy-1+ (16.6%) and Thy-1- (83.4%) cells; adoptive transfer of Thy-1- cells abrogated oral tolerance whereas the Thy-1+ subset was without effect. When the expression of TCR on IEL with this biologic function was determined by use of monoclonal anti-alpha beta TCR (H57.597), TCR2-, CD3+ IEL possessed immunoregulatory function whereas the alpha beta-TCR+ (TCR2+) fraction did not abrogate OT. Immunoprecipitation of membrane fractions obtained from purified CD3+, CD4-, CD8+, Thy-1- IEL with polyclonal anti-delta peptide (Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) antibody revealed bands of 45 and 35 kDa, corresponding to the delta- and gamma-chains, respectively. These results suggest that gamma delta-TCR+ IEL possess a regulatory function, namely the restoration of immune responses in a state of oral tolerance. Further, both CD3+, CD4-, CD8+, Thy-1-, and CD3+, DN IEL T cells exhibit this effector contrasuppressor function.  相似文献   

7.
Previous work has shown that abrogation of oral tolerance is mediated by T cells which are found in the CD3+, L3T4- (CD4-), and Lyt-2- (CD8-) subset (termed double-negative; DN) in mice. Inasmuch as it is known that athymic, nude (nu/nu) mice possess Thy 1+, CD4-, and CD8- T cells which also exhibit a functionally rearranged TCR gamma-chain, we investigated whether this subset of nude T cells contained functional immunoregulatory cells. In this report, we examined the phenotype and distribution of CD3+ T cells in the spleen and in the mesenteric and peripheral lymph nodes of BALB/c nu/nu mice in comparison with normal mice (+/+). In the spleens of nude mice, the predominant CD3+ T cell subpopulation was DN. Further, in mesenteric and peripheral lymph nodes, approximately one-third and one-half of the CD3+ T cells were double negative, respectively. In contrast, CD3+, DN T cells represent a small subpopulation in normal (+/+) mice. We next showed that functional regulatory T cells which possess the ability to abrogate oral tolerance were induced in nu/nu mice by Ag priming. BALB/c nude mice were immunized with SRBC, and the splenic CD3+, Vicia villosa-adherent cells were obtained by panning. Adoptive transfer of CD3+, V. villosa-adherent T cells to orally tolerant BALB/c mice restored responsiveness to SRBC, whereas V. villosa nonadherent cells were without effect. In other experiments, CD3+ T cells from the spleens of SRBC-primed mice were further enriched for the CD5+, DN phenotype and adoptive transfer of this subset completely abrogated oral tolerance to SRBC. To characterize the nature of the TCR expressed on these CD3+, DN T cells, we developed a rabbit antibody to a synthetic peptide (residues 209-218: Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) which was synthesized from a deduced sequence of the murine delta-gene. Immunoprecipitation of a cell membrane fraction from CD3+, DN T cells with anti-delta TCR antibody isolated a 45-kDa band. Furthermore, immunoprecipitation of these cells with anti-CD3 (145-2C11) revealed bands at 45 and 35 kDa (corresponding to delta- and gamma-chains, respectively). Taken together, these results are the first to show that gamma delta-TCR bearing CD3+, CD4-, and CD8- T cells are functional and reverse oral tolerance when adoptively transferred.  相似文献   

8.
It has been well established that T cell tolerance to self Ag occurs primarily via clonal deletion of immature thymocytes in the thymus. Evidence also exists that there are additional mechanisms operative on mature T cells for establishing and maintaining tolerance in the periphery. To follow the fate of mature Ag-specific T cells in vivo, we used female transgenic mice, which contain a large population of male H-Y Ag-specific T cells that can be identified by immunostaining with mAb directed against CD8 and the transgenic TCR. H-Y Ag was introduced into these mice by injecting Ag-bearing male lymphocytes using conditions known to induce CTL precursor response reduction. The number of Ag-reactive CD8+ transgenic T cells in the periphery started to decrease after 2 days of in vivo exposure to male Ag. Decline was maximum (up to 80% of total) by 7 days, and stayed at this level for at least 6 wk. CD4+ cells and those CD8+ cells that did not carry the transgenic TCR were not affected. Most or all of the remaining Ag-reactive CD8+ cells in the periphery were fully responsive when stimulated by male Ag in vitro. Maturation of transgenic T cells in the thymus of injected mice remained the same as that of control animals. Our data provide direct evidence that mature Ag-reactive CD8+ cells are susceptible to clonal deletion in the periphery when exposed to the Ag in vivo. These findings suggest the presence of two types of APC in the periphery: stimulatory APC (e.g., macrophages and dendritic cells) required for initiating an active immune response; and functionally deleting APC (or veto cells) capable of deleting mature T lymphocytes that recognize Ag presented on their surface. Functionally deleting APC that present self Ag to peripheral T cells may provide a fail-safe mechanism against autoreactive cells that escaped deletion during differentiation in the thymus.  相似文献   

9.
Exclusion and inclusion of alpha and beta T cell receptor alleles.   总被引:20,自引:0,他引:20  
P Borgulya  H Kishi  Y Uematsu  H von Boehmer 《Cell》1992,69(3):529-537
Exclusion and inclusion of T cell receptor (TCR) genes were analyzed in alpha beta TCR transgenic mice. Both transgenes are expressed unusually early on the surface of CD4-8-, HSA+, IL-2R- thymocytes. These progenitor cells give rise to progeny, which at the single-cell level contains endogenous alpha but not beta TCR-RNA as well as protein, in addition to products encoded by the transgenes. Thus, the surface expression of an alpha beta TCR does not prevent further alpha TCR rearrangement in immature thymocytes that still transcribe RAG-1 and RAG-2 genes. Reduced levels of RAG-1 and RAG-2 RNA are detectable only in CD4+8+ TCR high cells, which result from positive selection in the thymus. The results suggest that a developing T cell may try different alpha beta TCRs for binding to thymic MHC ligands, and that recombination at the alpha locus ceases only after positive selection.  相似文献   

10.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

11.
12.
Nonobese diabetic (NOD) mice carrying a transgenic TCR from an islet Ag-specific CD4 T cell clone, BDC2.5, do not develop diabetes. In contrast, the same transgenic NOD mice on the SCID background develop diabetes within 4 wk after birth. Using a newly developed mAb specific for the BDC2.5 TCR, we examined the interaction between diabetogenic T cells and regulatory T cells in NOD.BDC transgenic mice. CD4 T cells from NOD.BDC mice, expressing high levels of the clonotype, transfer diabetes to NOD.SCID recipients. In contrast, CD4 T cells expressing low levels due to the expression of both transgenic and endogenous TCR alpha-chains inhibit diabetes transfer. The clonotype-low CD4 T cells appear late in the ontogeny in the thymus and peripheral lymphoid organs, coinciding with resistance to cyclophosphamide-induced diabetes. These results demonstrate that diabetic processes in NOD.BDC mice are regulated by a balance between diabetogenic T cells and regulatory T cells. In the absence of specific manipulation, regulatory T cell function seems to be dominant and mice remain diabetes free. Understanding of mechanisms by which regulatory T cells inhibit diabetogenic processes would provide means to prevent diabetes development in high-risk human populations.  相似文献   

13.
Transplantation tolerance is induced reliably in experimental animals following intrathymic inoculation with the relevant donor strain Ags; however, the immunological mechanisms responsible for the induction and maintenance of the tolerant state remain unknown. We investigated these mechanisms using TCR transgenic mice (TS1) that carry T cells specific for an immunodominant, MHC class II-restricted peptide (S1) of the influenza PR8 hemagglutinin (HA) molecule. We demonstrated that TS1 mice reject skin grafts that have transgene-encoded HA molecules (HA104) as their sole antigenic disparity and that intrathymic but not i.v. inoculation of TS1 mice with S1 peptide induces tolerance to HA-expressing skin grafts. Intrathymic peptide inoculation was associated with a dose-dependent reduction in T cells bearing high levels of TCR specific for HA. However, this reduction was both incomplete and transient, with a full recovery of S1-specific thymocytes by 4 wk. Peptide inoculation into the thymus also resulted in the generation of immunoregulatory T cells (CD4+CD25+) that migrated to the peripheral lymphoid organs. Adoptive transfer experiments using FACS sorted CD4+CD25- and CD4+CD25+ T cells from tolerant mice revealed that the former but not the latter maintain the capacity to induce rejection of HA bearing skin allografts in syngeneic hosts. Our results suggest that both clonal frequency reduction in the thymus and immunoregulatory T cells exported from the thymus are critical to transplantation tolerance induced by intrathymic Ag inoculation.  相似文献   

14.
The role of B7 costimulation in CD4/CD8 T cell homeostasis   总被引:7,自引:0,他引:7  
The effect of B7-mediated costimulation on T cell homeostasis was examined in studies of B7-1 (CD80) and B7-2 (CD86) transgenic as well as B7-deficient mice. B7 overexpression in transgenic mice resulted in marked polyclonal peripheral T cell hyperplasia accompanied by skewing toward an increased proportion of CD8 single-positive cells and a decreased proportion of CD4 single-positive cells in thymus and more markedly in peripheral T cells. B7-induced T cell expansion was dependent on both CD28 and TCR expression. Transgenic overexpression of B7-1 or B7-2 resulted in down-regulation of cell surface CD28 on thymocytes and peripheral T cells through a mechanism mediated by intercellular interaction. Mice deficient in B7-1 and B7-2 exhibited changes that were the reciprocal of those observed in B7-overexpressing transgenics: a marked increase in the CD4/CD8 ratio in peripheral T cells and an increase in cell surface CD28 in thymus and peripheral T cells. These reciprocal effects of genetically engineered increase or decrease in B7 expression indicate that B7 costimulation plays a physiological role in the regulation of CD4+ and CD8+ T cell homeostasis.  相似文献   

15.
Severe combined immunodeficiency (SCID) mice can be transplanted successfully with human fetal liver and thymus (SCID-hu mice). Precursor cells derived from the fetal liver differentiate in the thymus and migrate into the blood as mature T cells. In the present paper, the peripheral T cell compartment of such mice was studied. Peripheral WBC were activated by PHA and cultured in the presence of irradiated human feeder cells. The resultant cell population consisted exclusively of human CD1- CD2+ CD3+ CD7+ T lymphocytes; up to 4% of the T cells expressed the TCR gamma delta, whereas 95 to 100% were TCR alpha beta +. The CD4bright (42 to 66%) and CD8bright (30 to 54%) populations coexpressed variable but low levels of CD8 and CD4, respectively. The T cell cultures from the SCID-hu mice did not display reactivity towards the autologous human EBV-transformed B cell lines (B-LCL). On the other hand, these human T cells proliferated and were cytotoxic against allogeneic human B-LCL. T cell clones were established from cultured SCID-hu T cells. All T cell clones were TCR alpha beta + CD3+ CD2+; 61% of the clones were CD4+ CD8-, 27% were CD8+ CD4-, 11% were CD8+ CD4lo, and 2% were CD4+ CD8lo. None of these clones recognized the autologous B-LCL established from the fetal human donor. Fourteen of 100 T cell clones had specific alloreactivity, as tested on a panel of five B-LCL. Of these 14, two CD8+ CD4lo and two CD8+ CD4- clones were cytotoxic and did not proliferate in response to specific stimulator cells. Furthermore, two CD4+ CD8lo and eight CD4+ CD8- clones proliferated specifically in response to alloantigens. In conclusion, the peripheral human T cells of SCID-hu animals are functional and their TCR repertoire is polyclonal, alloreactive, and devoid of self-reactive cells. Therefore, the SCID-hu mouse can be a suitable model for the study of alloreactivity and allotolerance in vivo, as well as for the study of negative selection in the human thymus.  相似文献   

16.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

17.
In the present work, we tested in SCID and Balb/c mice the activity of T hybridoma transfected with T cell receptor (TCR) alpha/beta chain genes. A T cell hybridoma denoted D011107 was used as recipient for transfection of cytotoxic KB5C20 TCR alpha/beta heterodimer genes by protoplast fusion or electroporation. After transfection, the parental D011107 T cell line reexpressed CD5 and CD4 surface molecules. In vitro, we noted strong proliferation and unusual cytotoxic reactivities against H-2k target cells although the transfected cell line does not express the CD8 molecule. The fate of parental and transfected cells was examined in severe combined immunodeficient (SCID) and Balb/c mice at Day 16 after intravenous injection. Cells from bone marrow, thymus, and spleen tissues were analyzed by immunofluorescence. The transfected T cell hybridoma was CD3+ Desire 1+ CD4+ Thy1.2. The SCID mice grafted with the transfected T cell hybridoma presented a high percentage of CD3+ (15%), CD4+ (27%), Thy1.2+ (27.52%), and Desire 1+ (8.74%) cells in the spleen. The percentages of CD3+ (6.2%) and Thy1.2+ (5.06%) cells in the spleen from SCID mice grafted with parental T cell D011107 and from untreated SCID were similar and lower (CD3+, 3.52%; Thy1.2+, 4.34%). It seems that transfected T cells hybridoma grafted in the SCID mice induce significant expression of CD4+ Thy1.2+ Desire 1- cells (17%) in the spleen. These results indicate that transfected T cells graft may allow T cell differentiation. In Balb/c mice, the percentage of different T cell subsets in bone marrow, thymus, or spleen cells in mice injected with transfected T cells was similar to that in untreated mice. We did not observe any cytotoxic or significant allogeneic proliferation in vitro.  相似文献   

18.
Most current models of T cell activation postulate a requirement for two distinct signals. One signal is delivered through the TCR by engagement with peptide/MHC complexes, and the second is delivered by interaction between costimulatory molecules such as CD28 and its ligands CD80 and CD86. Soluble peptide/MHC tetramers provide an opportunity to test whether naive CD8+ T cells can be activated via the signal generated through the TCR-alphabeta in the absence of any potential costimulatory molecules. Using T cells from two different TCR transgenic mice in vitro, we find that TCR engagement by peptide/MHC tetramers is sufficient for the activation of naive CD8+ T cells. Furthermore, these T cells proliferate, produce cytokines, and differentiate into cytolytic effectors. Under the conditions where anti-CD28 is able to enhance proliferation of normal B6 CD4+, CD8+, and TCR transgenic CD8+ T cells with anti-CD3, we see no effect of anti-CD28 on proliferation induced by tetramers. The results of this experiment argue that given a strong signal delivered through the TCR by an authentic ligand, no costimulation is required.  相似文献   

19.
Although cortical (CD4+CD8+) thymocytes mobilize intracellular calcium poorly when CD3/TCR is ligated, we have found that murine cortical thymocytes can transduce strong biochemical signals in response to ligation of the CD3/Ti TCR complex (CD3/TCR) and that the signals are regulated by CD4 and CD8 interactions with CD3/TCR. Striking increases in intracellular calcium were observed in cortical thymocytes from transgenic mice containing productively rearranged alpha and beta TCR genes, when CD3 or TCR was cross-linked with CD4 or CD8 using heteroconjugated mAb. However, in mature T cells derived from lymph nodes of these mice, identical stimuli elicited calcium responses that were significantly smaller in magnitude. A thymocyte cell line that expresses a low level of the transgenic TCR and has a phenotype characteristic of cortical thymocytes (CD4+CD8+J11d+Thy-1+) was established from a female alpha beta TCR transgenic mouse. Cross-linking of CD4 or CD8 molecules to CD3/TCR induced strong calcium responses in these cells. Responses were weak or absent when CD3 or TCR were aggregated alone. Heteroconjugates of Thy-1xCD3 did not increase the intracellular calcium concentration in transgenic thymocytes or in the thymocyte cell line, although Thy-1 is highly expressed on immature cells. Enhanced tyrosine phosphorylation was observed when CD3 or TCR was cross-linked with CD4 or CD8 on transgenic thymocytes or on the thymocyte cell line, in comparison with aggregation of CD3/TCR alone. Taken together, these data show that CD4 and CD8 molecules allow the weakly expressed CD3/TCR of cortical thymocytes to transduce strong intracellular signals upon receptor ligation. These signals may be involved in selection processes at the CD4+CD8+ stage of differentiation.  相似文献   

20.
T cells bearing the alpha beta T cell receptor (TCR) can be divided into CD4+8- and CD4-8+ subsets which develop in the thymus from CD4+8+ precursors. The commitment to the CD4 and CD8 lineage depends on the binding of the alpha beta TCR to thymic major histocompatibility complex (MHC) coded class II and class I molecules, respectively. In an instructive model of lineage commitment, the binding of the alpha beta TCR, for instance to class I MHC molecules, would generate a specific signal instructing the CD4+8+ precursors to switch off the expression of the CD4 gene. In a selective model, the initial commitment, i.e. switching off the expression of either the CD4 or the CD8 gene would be a stochastic event which is then followed by a selective step rescuing only CD4+ class II and CD8+ class I specific T cells while CD4+ class I and CD8+ class II specific cells would have a very short lifespan. The selective model predicts that a CD8 transgene which is expressed in all immature and mature T cells should rescue CD4+ class I MHC specific T cells from cell death. We have performed experiments in CD8 transgenic mice which fail to support a selective model and we present data which show that the binding of the alpha beta TCR to thymic class I MHC molecules results in up-regulation of the TCR in the CD4+8+ population. Therefore, these experiments are consistent with an instructive model of lineage commitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号