首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterium, Vitreoscilla, produces a delta mu(Na+) across its membrane during respiration. A key enzyme for this function is the cytochrome bo terminal oxidase which, when incorporated into synthetic proteoliposomes, pumps Na(+) across the membrane upon the addition of a substrate. A Vitreoscilla cytochrome bo knock out (cyo(-)) mutant was isolated by transposon mutagenesis using pUT-mini-Tn5Cm. The membranes of this mutant lacked the characteristic 416 nm peak and 432 nm trough in CO difference spectra, which are clearly visible in spectra of the Vitreoscilla wild-type, but peaks at 627, 560, and 530 nm in reduced minus oxidized difference spectra indicate that cytochrome bd is still present. The specific NADH oxidase and ubiquinol-1 oxidase activities of the cyo(-) mutant membranes were less than those of Vitreoscilla wild-type and Escherichia coli membranes, and the stimulation of these activities of the mutant and E. coli membranes by 75 mM NaCl was approximately 50% less than that of Vitreoscilla wild-type membranes. The ubiquinol-1 oxidase activity of the cyo(-) mutant membranes was inhibited by 10 mM KCN to a lesser degree than that of the Vitreoscilla wild-type and E. coli membranes (50, 80, and 85%, respectively). This result is also consistent with the cyo(-) mutant membrane fragments containing only the cytochrome bd terminal oxidase, which is known to be less sensitive to KCN. Although the maximum respiration and growth of the cyo(-) mutant were less than those of the wild-type, this mutant is still capable of growing with cytochrome bd alone.  相似文献   

2.
The operon (cyo) encoding the Na(+)-pumping respiratory terminal oxidase (cytochrome bo) of the bacterium Vitreoscilla was transformed into Escherichia coli GV100, a deletion mutant of cytochrome bo. This was done for the wild type operon and five mutants in three conserved Cyo subunit I amino acids known to be crucial for H(+) transport in the E. coli enzyme, one near the nuclear center, one in the K-channel, and one in the D-channel. CO-binding, NADH and ubiquinol oxidase, and Na(+)-pumping activities were all substantially inhibited by each mutation. The wild type Vitreoscilla cytochrome bo can pump Na(+) against a concentration gradient, resulting in a transmembrane concentration differential of 2-3 orders of magnitude. It is proposed that Vitreoscilla cytochrome bo pumps four Na(+) through the D-channel to the exterior and transports four H(+) through the K-channel for the reduction of each O(2).  相似文献   

3.
The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of a homodimeric hemoglobin (VHb) under hypoxic growth conditions. Expression of VHb in heterologous hosts often enhances growth and product formation. A role in facilitating oxygen transfer to the respiratory membranes is one explanation of its cellular function. Immunogold labeling of VHb in both Vitreoscilla and recombinant Escherichia coli bearing the VHb gene clearly indicated that VHb has a cytoplasmic (not periplasmic) localization and is concentrated near the periphery of the cytosolic face of the cell membrane. OmpA signal-peptide VHb fusions were transported into the periplasm in E. coli, but this did not confer any additional growth advantage. The interaction of VHb with respiratory membranes was also studied. The K(d) values for the binding of VHb to Vitreoscilla and E. coli cell membranes were approximately 5-6 microm, a 4-8-fold higher affinity than those of horse myoglobin and hemoglobin for these same membranes. VHb stimulated the ubiquinol-1 oxidase activity of inverted Vitreoscilla membranes by 68%. The inclusion of Vitreoscilla cytochrome bo in proteoliposomes led to 2.4- and 6-fold increases in VHb binding affinity and binding site number, respectively, relative to control liposomes, suggesting a direct interaction between VHb and cytochrome bo.  相似文献   

4.
The bacterium, Vitreoscilla, can induce the synthesis of a homodimeric hemoglobin under hypoxic conditions. Expression of VHb in heterologous bacteria often enhances growth and increases yields of recombinant proteins and production of antibiotics, especially under oxygen-limiting conditions. There is evidence that VHb interacts with bacterial respiratory membranes and cytochrome bo proteoliposomes. We have examined whether there are binding sites for VHb on the cytochrome, using the yeast two-hybrid system with VHb as the bait and testing every Vitreoscilla cytochrome bo subunit as well as the soluble domains of subunits I and II. A significant interaction was observed only between VHb and intact subunit I. We further examined whether there are binding sites for VHb on cytochrome bo from Escherichia coli and Pseudomonas aeruginosa, two organisms in which stimulatory effects of VHb have been observed. Again, in both cases a significant interaction was observed only between VHb and subunit I. Because subunit I contains the binuclear center where oxygen is reduced to water, these data support the function proposed for VHb of providing oxygen directly to the terminal oxidase; it may also explain its positive effects in Vitreoscilla as well as in heterologous organisms.  相似文献   

5.
The function of the reversible oxygen-binding hemoprotein from Vitreoscilla (VHb), which enhances oxygen-limited cell growth and recombinant protein production when functionally expressed in Escherichia coli, was investigated in wild-type E. coli and in E. coli mutants lacking one of the two terminal oxidases, cytochrome o complex (aerobic terminal oxidase, Cyo) or cytochrome d complex (microaerobic terminal oxidase, Cyd). Deconvolution of VHb, cytochrome o, and cytochrome d bands from in vivo absorption spectra revealed a 5-fold enhancement in cytochrome o content and a 1.5-fold increment in cytochrome d by VHb under microaerobic environments (dissolved oxygen less than 2% air saturation). Based upon oxygen uptake kinetics measurements of these mutants, the apparent oxygen affinity of the Cyo(+), Cyd(-) E. coli was increased in the presence of VHb, but no difference in the apparent K(m) was observed for the Cyo(-), Cyd(+) strain. Results suggest that the expression of VHb in E. coli increases the level and activity of terminal oxidases and thereby improves the efficiency of microaerobic respiration and growth.  相似文献   

6.
The function of the reversible oxygen-binding hemoprotein from Vitreoscilla (VHb), which enhances oxygen-limited cell growth and recombinant protein production when functionally expressed in Escherichia coli, was investigated in wild-type E. coli and in E. coli mutants lacking one of the two terminal oxidases, cytochrome o complex (aerobic terminal oxidase, Cyo) or cytochrome d complex (microaerobic terminal oxidase, Cyd). Deconvolution of VHb, cytochrome o, and cytochrome d bands from in vivo absorption spectra revealed a 5-fold enhancement in cytochrome o content and a 1.5-fold increment in cytochrome d by VHb under microaerobic environments (dissolved oxygen less than 2% air saturation). Based upon oxygen uptake kinetics measurements of these mutants, the apparent oxygen affinity of the Cyo(+), Cyd(-) E. coli was increased in the presence of VHb, but no difference in the apparent K(m) was observed for the Cyo(-), Cyd(+) strain. Results suggest that the expression of VHb in E. coli increases the level and activity of terminal oxidases and thereby improves the efficiency of microaerobic respiration and growth. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
8.
In this study, a fusion protein (VHb-DAAO) of D-amino acid oxidase (DAAO) with Vitreoscilla hemoglobin (VHb) was functionally expressed in Escherichia coli and purified. The k(cat) value VHb-DAAO (47.1 s?1) towards rac-3-flouroalanine was about 2-fold higher than that of DAAO (21.9 s?1). rac-3-Flouroalanine (500 mM) was kinetically resolved into (R)-3-fluoroalanine with high enatiomeric excess (>99%) by VHb-DAAO with about 52% conversion.  相似文献   

9.
Particles from both Saprospira grandis and Vitreoscilla species, obtained by high-pressure extrusion and sonic treatment, respectively, actively catalyze the oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate with O(2). These activities are inhibited by cyanide but not by antimycin; Saprospira is also amytal- and rotenone-insensitive. Vitreoscilla preparations were unable to oxidize mammalian ferrocytochrome c and reduced tetramethyl-p-phenylenediamine, whereas the Saprospira preparations did so actively. Low-temperature (77 K) difference spectroscopy of Vitreoscilla cells and particles indicates the presence of three maxima in the cytochrome alpha-region at 554, 558, and 562 nm. All three cytochromes are active in NADH and succinate oxidation, but none is ascorbate reducible. Cytochrome o is the only CO-binding pigment present and is probably the terminal oxidase; it has properties similar to the cytochrome o isolated in solubilized form from this organism. Saprospira cells and membranes exhibit four cytochrome absorption bands whose maxima are at 550, 554, 558, and 603 nm at 77 K. The latter component has not been noted previously. NADH and succinate reduce all four cytochromes, but ascorbate reduces only the 550- and 603-nm pigments. CO spectra indicate the presence of cytochrome a,a(3) which is probably the oxidase. A second CO-binding pigment is present which is not a peroxidase but may be a cytochrome.  相似文献   

10.
Cytochrome o, a protoheme IX pigment, has been proposed as the terminal oxidase of the filamentous bacterium, Vitreoscilla. Aerobic and anaerobic photolysis of CO-liganded whole cells demonstrated the presence of a second CO-reactive pigment, cytochrome o'. At temperatures lower than -100 degrees C, anaerobic photolysis dissociated only about 25% of the total CO-liganded components to reveal the unliganded cytochrome o'. At these temperatures, the photolysis of cytochrome o could not be demonstrated. At warmer temperatures, recombination of CO with the reduced cytochrome o' occurred with an apparent energy of activation of 5.8 kcal/mol. Aerobic photolysis of whole cells demonstrated two oxygen-bound intermediates. At temperatures lower than -95 degrees C, a spectrally distinct compound with absorption maxima at 428, 534, and 564 nm appeared (form I'); the apparent second order rate constant (k+1) for the formation of this intermediate was found to be 9.1 M-1 s-1, the reverse rate (k-1) was 9.9 X 10(-5) s-1, and the equilibrium constant (Kd) was 1.1 X 10(-5) M. This oxygen intermediate of cytochrome o' is spectrally and kinetically similar to the oxygen intermediate of cytochrome o seen in Escherichia coli. At temperatures warmer than -90 degrees C, photolysis of aerobic samples resulted in the immediate formation of a second oxygen-bound intermediate (form I) with absorption maxima at 422, 534, and 564 nm. This second intermediate results from the binding of oxygen to the cytochrome o (oxygenated cytochrome o). These data support the proposal that whole cells of Vitreoscilla contain two alternative pathways of electron transport, one terminating with cytochrome o and the other with cytochrome o'.  相似文献   

11.
Vitreoscilla hemoglobin is a good oxygen trapping agent and its presence in genetically engineered Escherichia coli helps this bacterium to grow better. Here, the potential use of this hemoglobin, for improving the growth and the oxygen transfer properties of Pseudomonas aeruginosa as well as Escherichia coli, was investigated. To stably maintain it in both bacteria, a broad-host range cosmid vector (pHG1), containing the entire coding sequence for Vitreoscilla hemoglobin gene and its native promoter on a 2.3 kb fragment, was constructed. Though at different levels, both bacteria produced hemoglobin and while the oxygen uptake rates of vgb-bearing strains were 2-3-fold greater than that of non-vgb-bearing strains in both bacteria, the growth advantage afforded by the presence of Vitreoscilla hemoglobin was somewhat varied. As an alternative to the traditional method of the improvement of oxygen transfer properties of the environment in which cells are grown, the genetic manipulation applied here improved the oxygen utilization properties of cells themselves.  相似文献   

12.
A cytochrome that can pump sodium ion   总被引:2,自引:0,他引:2  
Previous studies have shown that the bacterium, Vitreoscilla, generates a respiratory-driven delta psi Na+. Two major respiratory electron transport proteins, NADH dehydrogenase (NADH:Quinone oxidoreductase), and cytochrome o terminal oxidase are candidates for the electrogenic Na+ pumping that mediates the delta psi Na+ formation. The NADH oxidase activity of the membranes was enhanced more by Na+ than by Li+. The NADH:Quinone oxidoreductase activity in the respiratory chain was enhanced by Na+ and Li+, whereas the quinol oxidase activity of cytochrome o was enhanced specifically by Na+, and not by Li+, K+, or choline. Purified cytochrome o, reconstituted into Na(+)-loaded liposomes in the right-side-out orientation, catalyzed a net Na+ extrusion when energized with Q1H2(1). In nonloaded inside-out proteoliposomes, this cytochrome catalyzed a net uptake of 22Na+ when energized with ascorbate/TMPD. Both Na(+)-pumping activities were inhibited by CN-. These results are consistent with the Vitreoscilla cytochrome o being a redox-driven Na+ pump.  相似文献   

13.
The polyhydroxyalkanoate synthesis operon was cloned from Aeromonas hydrophila CGMCC 0911. Heterogeneous expression of the cloned polyhydroxyalkanoate synthesis operon in Escherichia coli resulted in accumulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) consisting of 13.9 mol % 3-hydroxyhexanoate up to 29.2 wt % of cell dry weight when grown in lauric acid. The cell dry weight of recombinant E. coli harboring the polyhydroxyalkanoate synthesis operon was improved to 1.7 g L (-1), which was much higher than that of 0.3 g L (-1) of the wild type E. coli. Coexpression of acyl-CoA dehydrogenase gene (yafH) from E. coli and Vitreoscilla hemoglobin gene (vgb) from Vitreoscilla together with the whole A. hydrophila CGMCC 0911 polyhydroxyalkanoate synthesis operon facilitated cell growth and polyhydroxyalkanoate accumulation in E. coli. When yafH was coexpressed together with the polyhydroxyalkanoate synthesis operon, the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) content was increased from 29.2 to 52.1 wt %, and the cell dry weight was also increased slightly from 1.70 to 1.86 g L (-1). Coexpression of vgb gene could further enhance the cell dry weight to 2.0 g L(-1) and the polyhydroxyalkanoate content to 60.7 wt %.  相似文献   

14.
D-氨基酸氧化酶(DAAO)是一种重要的工业酶。为了进一步提高DAAO在大肠杆菌中的可溶性和活性表达, 分别构建了麦芽糖结合蛋白(MBP)和透明颤菌血红蛋白与三角酵母DAAO (TvDAAO) 的N-端融合蛋白。其中, MBP融合蛋白MBP-TvDAAO在组成型(JM105/pMKC-DAAO)和诱导型菌株(JM105/pMKL-DAAO)中表达时, 目标蛋白的可溶性表达量分别达到全细胞蛋白表达量的28%以上和17%左右, 比无MBP融合的对照菌株BL21(DE3)/pET-DAAO分别提高3.7和1.8倍; 但其酶活水平显著下降。VHb融合蛋白VHb-TvDAAO在重组菌BL21(DE3)/pET-VDAAO中摇瓶诱导表达时, DAAO酶活达到了3.24 u/mL, 比对照菌株BL21(DE3)/pET-DAAO提高了约90%。  相似文献   

15.
D-氨基酸氧化酶(DAAO)是一种重要的工业酶。为了进一步提高DAAO在大肠杆菌中的可溶性和活性表达, 分别构建了麦芽糖结合蛋白(MBP)和透明颤菌血红蛋白与三角酵母DAAO (TvDAAO) 的N-端融合蛋白。其中, MBP融合蛋白MBP-TvDAAO在组成型(JM105/pMKC-DAAO)和诱导型菌株(JM105/pMKL-DAAO)中表达时, 目标蛋白的可溶性表达量分别达到全细胞蛋白表达量的28%以上和17%左右, 比无MBP融合的对照菌株BL21(DE3)/pET-DAAO分别提高3.7和1.8倍; 但其酶活水平显著下降。VHb融合蛋白VHb-TvDAAO在重组菌BL21(DE3)/pET-VDAAO中摇瓶诱导表达时, DAAO酶活达到了3.24 u/mL, 比对照菌株BL21(DE3)/pET-DAAO提高了约90%。  相似文献   

16.
17.
When Vitreoscilla were grown in medium containing 60mM sodium nitrite under both normal and limited aeration conditions, the levels of Vitreoscilla hemoglobin (VHb) were decreased by greater than 90%, while the levels of the terminal respiratory oxidase, cytochrome bo, were increased 350% under normal aeration and 7-23% under limited aeration. Cytochrome function, as measured by both NADH and ubiquinol oxidases for cells grown under both conditions, increased in parallel (by 150-222% and 8-56%, respectively, for the two activities). Nitrite in the medium inhibited Vitreoscilla growth at both normal and limited aeration. The inhibition of VHb at 60mM nitrite decreased whole cell respiration to the greatest degree in stationary phase for growth in limited aeration conditions, which was the most oxygen poor condition tested. These results are consistent with the originally proposed role for VHb, as an aid to respiration under hypoxic conditions.  相似文献   

18.
Two Escherichia coli mutants that lack both cytochrome o and d terminal oxidases are able to grow with glucose as the carbon source but not with the aerobic substrates succinate or lactate. One of these, GV101, is a deletion mutant of cytochrome o and a point mutation of cytochrome d. The other, GK100, is a total deletion mutant of all the genes for both cytochromes. When these mutants were transformed with a plasmid containing the gene for the bacterial hemoglobin from Vitreoscilla, they were capable of growth in the presence of succinate or lactate and showed aerobic respiration in the presence of these substrates, unlike the parent strains. Cells transformed with a plasmid containing the gene for the hemoglobin but lacking the native promoter did not express the hemoglobin and did not respire. Membrane vesicles prepared from the cells consumed oxygen in the presence of succinate. This succinate-supported respiration decreased with successive washings of the vesicles but was restored by adding E. coli cytosol containing the hemoglobin or by adding the hemoglobin purified from Vitreoscilla. This respiration was inhibited by cyanide.  相似文献   

19.
Mutants of Escherichia coli K-12 deficient in pyruvate oxidase were isolated from an aceEF (pyruvate dehydrogenase-deficient) strain by selection for a complete absence of growth on medium lacking acetate. Extracts of two of the mutants were shown to contain normal levels of pyruvate oxidase antigen, although the enzymatic activities of the extracts were reduced or absent. The poxB locus was mapped by using closely linked transposon insertions to min 18.7 of the E. coli linkage map between the cmlA and aroA loci, a location far removed from that of the regulatory gene, poxA.  相似文献   

20.
The conserved Glu540 in subunit I of Escherichia coli cytochrome bo (a H(+) pump) is replaced by Asp544 in the Vitreoscilla enzyme (a Na(+) pump). Site-directed mutagenesis of the Vitreoscilla cytochrome bo operon changed this Asp to Glu, and both wild type and mutant cyo's were transformed into E. coli strain GV100, which lacks cytochrome bo. Compared to the wild type transformant the Asp544Glu transformant had decreased ability to pump Na(+) as well as decreased stimulation in respiratory activity in the presence of Na(+). Preliminary experiments indicated that this mutant also had increased ability to pump protons, suggesting that this single change may provide cation pumping specificity in this group of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号