首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Boritz E  Palmer BE  Wilson CC 《Journal of virology》2004,78(22):12638-12646
Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-gamma)-producing CD4+ T cells. Among the 20 viremic, treatment-naive subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-gamma-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.  相似文献   

2.
The role of Type I interferon (IFN) during pathogenic HIV and SIV infections remains unclear, with conflicting observations suggesting protective versus immunopathological effects. We therefore examined the effect of IFNα/β on T cell death and viremia in HIV infection. Ex vivo analysis of eight pro- and anti-apoptotic molecules in chronic HIV-1 infection revealed that pro-apoptotic Bak was increased in CD4+ T cells and correlated directly with sensitivity to CD95/Fas-mediated apoptosis and inversely with CD4+ T cell counts. Apoptosis sensitivity and Bak expression were primarily increased in effector memory T cells. Knockdown of Bak by RNA interference inhibited CD95/Fas-induced death of T cells from HIV-1-infected individuals. In HIV-1-infected patients, IFNα-stimulated gene expression correlated positively with ex vivo T cell Bak levels, CD95/Fas-mediated apoptosis and viremia and negatively with CD4+ T cell counts. In vitro IFNα/β stimulation enhanced Bak expression, CD95/Fas expression and CD95/Fas-mediated apoptosis in healthy donor T cells and induced death of HIV-specific CD8+ T cells from HIV-1-infected patients. HIV-1 in vitro sensitized T cells to CD95/Fas-induced apoptosis and this was Toll-like receptor (TLR)7/9- and Type I IFN-dependent. This sensitization by HIV-1 was due to an indirect effect on T cells, as it occurred in peripheral blood mononuclear cell cultures but not purified CD4+ T cells. Finally, peak IFNα levels and viral loads correlated negatively during acute SIV infection suggesting a potential antiviral effect, but positively during chronic SIV infection indicating that either the virus drives IFNα production or IFNα may facilitate loss of viral control. The above findings indicate stage-specific opposing effects of Type I IFNs during HIV-1 infection and suggest a novel mechanism by which these cytokines contribute to T cell depletion, dysregulation of cellular immunity and disease progression.  相似文献   

3.
The human immunodeficiency virus (HIV) infection shows variable rate of disease progression. The underlying biological and molecular mechanisms involved in determining progression of HIV infection are not fully understood. The aims of this study were to determine plasma concentrations of active TGF β 1, Th1 and Th2 cytokines in patients with non-progressive and those with progressive HIV-1 infection, as well as to determine if there is an association of these cytokines to disease progression. In a cross-sectional study of 61 HIV-1 infected individuals categorized according to disease progression as having non-progressive HIV-1 infection (n = 14) and progressive infection (n = 47), plasma levels of active TGF β 1, INF-γ, TNF-α, IL-10, IL-1β, IL-12p70 and IL-13 were compared with HIV uninfected healthy controls (n = 12). Plasma concentration of these cytokines was measured using a highly sensitive luminex200 XMAP assay. Pearson correlation test was used to assess the correlation of cytokines with CD4+ and CD8+ T cells, CD4:CD8 ratio and plasma HIV-1 RNA in the different study groups. Plasma concentrations of TGF β 1 and IL-10 were significantly decreased while IL-1β, IL-12p70 and TNF-α were increased in patients with non-progressive HIV-1 infection compared to patients with progressive infection. Plasma levels of TGF β 1 and IL-10 showed an inverse correlation with CD8+ T cell counts and CD4:CD8 ratios in patients with non-progressive HIV-1 infection, while plasma HIV-1 RNA positively correlated with CD4+ T cell counts. Plasma levels of TNF-α, IL-1β, IL-12p70 and IL-13 positively correlated with CD4+ T cell counts and inversely correlated with plasma HIV-1 RNA, CD8+ T cell count and CD4:CD8 ratio in patients with non-progressive infection. The correlation of cytokines to the state of T-lymphocyte and plasma HIV-1 RNA found in this study may provide insight into the role of cytokines in both progressive and non-progressive HIV-1 infection. Additionally, these findings may have implications for systemic cytokine-based therapies in HIV-1 infection.  相似文献   

4.
M Heinkelein  S Sopper    C Jassoy 《Journal of virology》1995,69(11):6925-6931
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated.  相似文献   

5.
Optimal CD4+ T cell activation requires the cooperation of multiple signaling pathways coupled to the TCR-CD3 complex and to the CD28 costimulatory molecule. In this study, we have investigated the expression of surface CXC chemokine receptor 4 (CXCR4) in enriched populations of CD4+ T PBL, stimulated with anti-CD3 and anti-CD28 mAbs, immobilized on plastic. Anti-CD3 alone induced a progressive down-regulation of surface CXCR4, accompanied by a significant decline in the entry of the HXB2 T cell line-tropic (X4-tropic) HIV-1 clone in CD4+ T cells. Of note, this effect was strictly dependent on the presence in culture of CD14+ monocytes. On the other hand, anti-CD28 alone induced a small but reproducible increase in the expression of surface CXCR4 as well as in the entry of HXB2 HIV-1 clone in resting CD4+ T cells. When the two mAbs were used in combination, anti-CD28 potently synergized with anti-CD3 in inducing the expression of CD69 activation marker and stimulating the proliferation of CD4+ T cells. On the other hand, anti-CD28 counteracted the CXCR4 down-modulation induced by anti-CD3. The latter effect was particularly evident when anti-CD28 was associated to suboptimal concentrations of anti-CD3. Because CXCR4 is the major coreceptor for the highly cytopathic X4-tropic HIV-1 strains, which preferentially replicate in proliferating CD4+ T cells, the ability of anti-CD28 to up-regulate the surface expression of CXCR4 in both resting and activated CD4+ T cells provides one relevant mechanism for the progression of HIV-1 disease.  相似文献   

6.
Fior J 《PloS one》2012,7(5):e37511
HIV infection usually leads to a progressive decline in number and functionality of CD4+ T lymphocytes, resulting in AIDS development. In this study, I investigated the strategy of using inoculated SupT1 cells to move infection from HIV-1 X4 strains toward the inoculated cells, which should theoretically prevent infection and depletion of normal CD4+ T cells, preventing the development of AIDS-related pathologies. Interestingly, the persistent in vitro replication in SupT1 cells renders the virus less cytopathic and more sensitive to antibody-mediated neutralization, suggesting that replication of the virus in the inoculated SupT1 cells may have a vaccination effect in the long run. In order to mimic the scenario of a therapy in which SupT1 cells are inoculated in an HIV-seropositive patient, I used infected SupT1/PBMC cocultures and a series of control experiments. Infections were done with equal amounts of the wild type HIV-1 LAI virus. The SupT1 CD4+CD8+ T cell population was distinguished from the PBMC CD4+CD8- T cell population by FACS analysis. The results of this study show that the virus-mediated killing of primary CD4+ T cells in the SupT1/PBMC cocultures was significantly delayed, suggesting that the preferential infection of SupT1 cells can induce the virus to spare primary CD4+ T cells from infection and depletion. The preferential infection of SupT1 cells can be explained by the higher viral tropism for the SupT1 cell line. In conclusion, this study demonstrates that it's possible in an in vitro system to use SupT1 cells to prevent HIV infection of primary CD4+ T cells, suggesting that further exploration of the SupT1 cell line as a cell-based therapy against HIV-1 may prove worthwhile.  相似文献   

7.
HIV-1 disease progression is associated with persistent immune activation. However, the nature of this association is incompletely understood. Here, we investigated immune activation in the CD4 T cell compartment of chronically HIV-1 infected individuals from Rakai, Uganda. Levels of CD4 T cell activation, assessed as co-expression of PD-1, CD38 and HLA-DR, correlated directly to viral load and inversely to CD4 count. Deeper characterization of these cells indicated an effector memory phenotype with relatively frequent expression of Ki67 despite their PD-1 expression, and levels of these cells were inversely associated with FoxP3+ regulatory T cells. We therefore use the term deregulated effector memory (DEM) cells to describe them. CD4 T cells with a DEM phenotype could be generated by antigen stimulation of recall responses in vitro. Responses against HIV-1 and CMV antigens were enriched among the DEM CD4 T cells in patients, and the diverse Vβ repertoire of DEM CD4 T cells suggested they include diverse antigen-specificities. Furthermore, the levels of DEM CD4 T cells correlated directly to soluble CD14 (sCD14) and IL-6, markers of innate immune activation, in plasma. The size of the activated DEM CD4 T cell subset was predictive of the rate of disease progression, whereas IL-6 was only weakly predictive and sCD14 was not predictive. Taken together, these results are consistent with a model where systemic innate immune activation and chronic antigen stimulation of adaptive T cell responses both play important roles in driving pathological CD4 T cell immune activation in HIV-1 disease.  相似文献   

8.
K Saha  P K Wong 《Journal of virology》1992,66(5):2639-2646
When neonatal FVB/N mice were inoculated with ts1, a temperature-sensitive mutant of Moloney murine leukemia virus TB, they developed a progressive bilateral hindlimb paralysis and immunodeficiency leading to death 4 to 6 weeks after inoculation. T lymphocytes have been shown to be primarily responsible for this ts1-induced syndrome. Here we compare the role played by each subset of T lymphocytes, i.e., CD4+ and CD8+ T cells, in disease development. Mice were depleted of a specific subset for the first 10 days of their lives by using either anti-CD4 or anti-CD8 monoclonal antibodies in vivo. Disease development in these mice was then monitored. Depletion of CD4+ T cells significantly attenuated the ts1-induced syndrome: virus replication was decreased, disease latency was extended, and death was prevented in 60% of the mice. Similar treatment with anti-CD8 antibody had almost no effect on disease progression. However, when depletion was begun 2 weeks after neonatal ts1 inoculation, CD4+ T cell depletion did not affect disease development. ts1 infected CD4+ and CD8+ T lymphocytes equally well in vivo, as shown by flow cytometric analysis, but virus replication was restricted primarily to the CD4+ subset of T cells, as found by in vitro assay. Hence, CD4+ T lymphocytes play an important role in the development of ts1-induced paralysis and immunodeficiency. The mechanism of this CD4+ T-cell-mediated disease production by ts1 is not clear; however, increased replication of ts1 in the CD4+ T cells, especially in the early stages of the disease, seems to play a crucial role.  相似文献   

9.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied.Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals.Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.  相似文献   

10.
11.
Yoon WK  Kim HJ  Son HY  Jeong KS  Park SJ  Kim TH  An MY  Kim SH  Kim SR  Ryu SY 《Regulatory peptides》2005,124(1-3):151-156
Leukocyte function-associated antigen-1 (LFA-1) is one of the integrins that are expressed on the leukocytes, and has been shown to play an important role in leukocyte trafficking. The adhesive activity of LFA-1 is governed partially by the Rap1. This study examined that the relationship between LFA-1 and Rap1 mRNA expressions by anti-CD3 and anti-CD3+SOM treatment in the CD4+ and CD8+ T cells. The LFA-1 mRNA expression levels following the anti-CD3 and anti-CD3+SOM treatment for 30 min was greater on the CD8+ T cells, and the LFA-1 expression of the CD8+ T cells with anti-CD+SOM treatment was affected more severely than that of the CD4+ T cells. The Rap1 mRNA expression patterns following anti-CD3 and anti-CD3+SOM stimulation in the CD4+ and CD8+ T cells were similar to the LFA-1 expression patterns, and the expression level following anti-CD3+SOM treatment was suppressed more significantly in the CD8+ T cells. These results suggest that the difference in the Rap1 expression level after stimulation might explain the differences in the LFA-1 expression level on the T cell subsets, and that the down-regulation of Rap1 expression following SOM treatment is closely related to the diminished LFA-1 expression.  相似文献   

12.
CD95(APO-1/Fas)-mediated apoptosis of bystander uninfected T cells exerts a major role in the HIV-1-mediated CD4+ T-cell depletion. HIV-1 gp120 has a key role in the induction of sensitivity of human lymphocytes to CD95-mediated apoptosis through its interaction with the CD4 receptor. Recently, we have shown the importance of CD95/ezrin/actin association in CD95-mediated apoptosis. In this study, we explored the hypothesis that the gp120-mediated CD4 engagement could be involved in the induction of susceptibility of primary human T lymphocytes to CD95-mediated apoptosis through ezrin phosphorylation and ezrin-to-CD95 association. Here, we show that gp120/IL-2 combined stimuli, as well as the direct CD4 triggering, on human primary CD4(+)T lymphocytes induced an early and stable ezrin activation through phosphorylation, consistent with the induction of ezrin/CD95 association and susceptibility to CD95-mediated apoptosis. Our results provide a new mechanism through which HIV-1-gp120 may predispose resting CD4(+)T cell to bystander CD95-mediated apoptosis and support the key role of ezrin/CD95 linkage in regulating susceptibility to CD95-mediated apoptosis.  相似文献   

13.
Persistent papillomas developed in ~10% of out-bred immune-competent SKH-1 mice following MusPV1 challenge of their tail, and in a similar fraction the papillomas were transient, suggesting potential as a model. However, papillomas only occurred in BALB/c or C57BL/6 mice depleted of T cells with anti-CD3 antibody, and they completely regressed within 8 weeks after depletion was stopped. Neither CD4+ nor CD8+ T cell depletion alone in BALB/c or C57BL/6 mice was sufficient to permit visible papilloma formation. However, low levels of MusPV1 were sporadically detected by either genomic DNA-specific PCR analysis of local skin swabs or in situ hybridization of the challenge site with an E6/E7 probe. After switching to CD3+ T cell depletion, papillomas appeared upon 14/15 of mice that had been CD4+ T cell depleted throughout the challenge phase, 1/15 of CD8+ T cell depleted mice, and none in mice without any prior T cell depletion. Both control animals and those depleted with CD8-specific antibody generated MusPV1 L1 capsid-specific antibodies, but not those depleted with CD4-specific antibody prior to T cell depletion with CD3 antibody. Thus, normal BALB/c or C57BL/6 mice eliminate the challenge dose, whereas infection is suppressed but not completely cleared if their CD4 or CD8 T cells are depleted, and recrudescence of MusPV1 is much greater in the former following treatment with CD3 antibody, possibly reflecting their failure to generate capsid antibody. Systemic vaccination of C57BL/6 mice with DNA vectors expressing MusPV1 E6 or E7 fused to calreticulin elicits potent CD8 T cell responses and these immunodominant CD8 T cell epitopes were mapped. Adoptive transfer of a MusPV1 E6-specific CD8+ T cell line controlled established MusPV1 infection and papilloma in RAG1-knockout mice. These findings suggest the potential of immunotherapy for HPV-related disease and the importance of host immunogenetics in the outcome of infection.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection of the human thymus results in depletion of CD4-bearing thymocytes. This depletion is initially manifested in the immature CD4+/CD8+ thymocyte subset. To determine cellular factors involved in HIV infection in the thymus, we examined the expression of the recently identified viral coreceptor, CXCR4, on fresh human thymocytes and on human cells from SCID-hu (Thy/Liv) mice. CXCR4 is a member of the chemokine receptor family which is required along with CD4 for entry into the cell of syncytium-inducing (SI) HIV-1 strains. Our analyses show that CXCR4 expression is modulated during T-lymphoid differentiation such that immature thymocytes display an increased frequency and higher surface density of the coreceptor than do more mature cells. In addition, using an SI strain of HIV-1 which directs expression of a reporter protein on the surface of infected cells, we have found that the immature CD4+/CD8+ thymocytes that express the highest levels of both CD4 and CXCR4 are the cells that are preferentially infected and depleted by the virus in vitro. Thus, high levels of both primary receptor and coreceptor may allow efficient infection of the thymus by certain HIV-1 strains. This in part may explain the rapid disease progression seen in some HIV-infected children, where the thymus is actively involved in the production of new T lymphocytes.  相似文献   

15.
16.
The depletion of immune T cells by human immunodeficiency virus type-1 (HIV-1) infection is a major mechanism involved in the pathogenesis of AIDS. Here, we examined a possible effector function of blood monocyte-derived dendritic cells (DCs) to induce apoptosis in bystander CD4+ and CD8+ T cells. The DCs were generated by culturing monocytes in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4. The DCs exposed to HIV-1 particles were co-cultured with healthy donor-derived blood T cells at a ratio of 1:20. Analyses by percent cell mortality, staining with propidium iodide and reactivity with Annexin V revealed the induction of apoptosis in both CD4+ and CD8+ target T cells. Further, this apoptosis occurred without stimulation with mitogens when the cell cycle of target T cells shifted from G0 to G1, probably due to the mitogenic effect of the DCs. Thus, induction of apoptosis in both CD4+ and CD8+ T cells occurred via interaction with DCs adsorbed with HIV-1 particles.  相似文献   

17.
Human immunodeficiency virus type-1 (HIV-1) and human T-cell leukemia virus type-I (HTLV-I) have a similar tropism for target cell types, especially for CD4+ T cells. In this study, we provide evidence that receptors of these two viruses exist independently on the target cell. We established an HTLV-I-producing CD8+ T cell line (ILT-8M2) with a remarkable cell fusion capacity. When cocultured with MOLT-4 cells, ILT-8M2 cells induced giant syncytia more efficiently than any other tested HTLV-I-producer cell lines. In contrast to other HTLV-I-producers, ILT-8M2 cells were minimally susceptible to cytopathic effects of HIV-1 due to very low expression of CD4, although they were able to be persistently infected by HIV-1. The indicator MOLT-4 cells are known to respond well to HIV-1-induced cell fusion, but they lose this ability if they become persistently infected with HIV-1 because of the reduction of CD4 receptor expression. ILT-8M2 was, however, still capable of inducing syncytia with the MOLT-4 cells persistently infected by HIV-1 (MOLT-4/IIIB). This syncytium formation was dependent on the HTLV-I-envelope, as it was inhibited by HTLV-I-positive human sera or a monoclonal antibody to HTLV-I gp46 but not by monoclonal antibodies to HIV-1 gp120 or CD4. Moreover, ILT-8M2 cells persistently infected by HIV-1 (ILT-8M2/IIIB) induced both HTLV-I- and HIV-1-mediated syncytia with uninfected MOLT-4 cells. These results suggest that HTLV-I induces cell fusion utilizing receptors on the target cells independent of HIV-1-receptors.  相似文献   

18.
Mechanism of tumor rejection in anti-CD3 monoclonal antibody-treated mice   总被引:4,自引:0,他引:4  
The present study was undertaken to determine the mechanism of tumor rejection in mice treated with low dose anti-CD3 mAb. It was found that treated mice developed nonrestricted antitumor cytolytic spleen cells of the Thy-1+, asialo GM-1+, CD4-, CD8- phenotype. Although these cells might play a role in immunopotentiating some immune responses, in vivo depletion studies using anti-asialo GM-1 mAb demonstrated that these cells were not involved in the rejection of the progressor tumor, 1591-PRO4L, by anti-CD3 mAb-treated mice. Mice treated with anti-CD3 did develop lasting tumor specific immunity as demonstrated by their ability to reject PRO4L on tumor rechallenge while being unable to reject an unrelated UV-induced tumor. The specificity of this memory implicated T cells in the response to PRO4L in anti-CD3-treated mice. Using in vivo T cell subset depletion of anti-CD3-treated animals, it was shown that both CD4+ and CD8+ T cells are required for anti-CD3-induced tumor rejection. The CD4+ cells provide helper function and are only required in the early rejection period, whereas CD8+ cells are required throughout the immune response. In fact, examination of rejecting tumors from treated animals revealed the presence of tumor-specific CD8+ cytolytic T cells capable of cytolysis immediately after removal from the rejecting PRO4L tumor. Thus, in vivo treatment with anti-CD3 mAb likely results in the pan-stimulation of the entire T cell population, which enhances the generation of specific CD8+ T cells, which then eliminate the tumor.  相似文献   

19.
Analysis of major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) capable of killing human immunodeficiency virus type 1 (HIV-1)-infected targets is essential for elucidating the basis for HIV-1 disease progression and the potential efficacy of candidate vaccines. The use of primary CD4+ T cells with variable infectivity as targets for such studies has significant limitations, and immortal autologous cells with high levels of CD4 expression that can be consistently infected with HIV-1 would be of much greater utility. Therefore, we transduced Epstein-Barr-virus-transformed B-lymphoblastoid cell lines (LCL) with a retroviral vector, LT4SN, containing the human CD4 gene. Stable LCL in which more than 95% of cells expressed membrane CD4 were obtained. Aliquots were infected with HIV-1, and, after 4 to 7 days, nearly all of the cells contained cytoplasmic gag and produced high levels of p24 antigen. The ability of major histocompatibility complex-restricted CD8+ CTL to lyse such HIV-1-infected CD4-transduced LCL (LCL-CD4HIV-1) was evaluated. These autologous targets were lysed by CTL generated from an HIV-1-uninfected vaccinee over a broad range of effector-to-target ratios. Similarly, the LCL-CD4HIV-1 were efficiently lysed by fresh circulating CTL from HIV-1-infected individuals, as well as by CTL activated by in vitro stimulation. Both HIV-1 env- and gag-specific CTL effectors lysed LCL-CD4HIV-1, consistent with the cellular expression of both HIV-1 genes. The LCL-CD4HIV also functioned as stimulator cells, and thus are capable of amplifying CTL against multiple HIV-1 gene products in HIV-1-infected individuals. The ability to produce HIV-1-susceptible autologous immortalized cell lines that can be employed as target cells should enable a more detailed evaluation of vaccine-induced CTL against both homologous and disparate HIV-1 strains. Furthermore, the use of LCL-CD4HIV-1 should facilitate the analysis of the range of HIV-1 gene products recognized by CTL in seropositive persons.  相似文献   

20.
We recently demonstrated that heme oxygenase (HO)-1 is constitutively expressed in human CD4+CD25+ regulatory T cells and induced by anti-CD28 or anti-CD28/anti-CD3 stimulation, even in CD4+CD25- responder T cells. To study the effects of HO-1 expression on lymphocyte survival, we transfected the HO-1 gene or induced the gene to express HO-1 protein with cobalt protoporphyrin (CoPP) in Jurkat T cells. Consistently, anti-Fas antibody triggered apoptotic cell death in wild-type Jurkat T cells. Surprisingly, however, HO-1-overexpressing Jurkat T cells showed strong resistance to Fas-mediated apoptosis. In contrast, abrogation of HO-1 expression by antisense oligomer against HO-1 gene from CoPP-treated cells or depletion of iron by desferrioxamine from HO-1-transfected cells abolished the resistance. In addition, exogenously added iron rendered wild-type Jurkat T cells resistant. The resistance involved IkappaB kinase (IKK) activation via iron-induced reactive oxygen species formation, NF-kappaB activation by activated IKK, and c-FLIP expression by activated NF-kappaB. Primary CD4+ T cells induced by CoPP to express HO-1 also showed more resistance to Fas-mediated apoptosis than untreated cells. Our findings suggest that HO-1 plays a critical and nonredundant role in Fas-mediated activation-induced cell death of T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号