首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major cell-surface carbohydrates (lipooligosaccharide, capsule, and glycoprotein N-linked heptasaccharide) of Campylobacter jejuni NCTC 11168 contain Gal and/or GalNAc residues. GalE is the sole annotated UDP-glucose 4-epimerase in this bacterium. The presence of GalNAc residues in these carbohydrates suggested that GalE might be a UDP-GlcNAc 4-epimerase. GalE was shown to epimerize UDP-Glc and UDP-GlcNAc in coupled assays with C. jejuni glycosyltransferases and in sugar nucleotide epimerization equilibria studies. Thus, GalE possesses UDP-GlcNAc 4-epimerase activity and was renamed Gne. The Km(app) values of a purified MalE-Gne fusion protein for UDP-GlcNAc and UDP-GalNAc are 1087 and 1070 microm, whereas those for UDP-Glc and UDP-Gal are 780 and 784 microm. The kcat and kcat/Km(app) values were three to four times higher for UDP-GalNAc and UDP-Gal than for UDP-GlcNAc and UDP-Glc. The comparison of the kinetic parameters of MalE-Gne to those of other characterized bacterial UDP-GlcNAc 4-epimerases indicated that Gne is a bifunctional UDP-GlcNAc/Glc 4-epimerase. The UDP sugar-binding site of Gne was modeled by using the structure of the UDP-GlcNAc 4-epimerase WbpP from Pseudomonas aeruginosa. Small differences were noted, and these may explain the bifunctional character of the C. jejuni Gne. In a gne mutant of C. jejuni, the lipooligosaccharide was shown by capillary electrophoresis-mass spectrometry to be truncated by at least five sugars. Furthermore, both the glycoprotein N-linked heptasaccharide and capsule were no longer detectable by high resolution magic angle spinning NMR. These data indicate that Gne is the enzyme providing Gal and GalNAc residues with the synthesis of all three cell-surface carbohydrates in C. jejuni NCTC 11168.  相似文献   

2.
The human P2Y14 receptor is potently activated by UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucuronic acid. Recently, cellular release of UDP-Glc and UDP-GlcNAc has been reported, but whether additional UDP-sugars are endogenous agonists for the P2Y14 receptor remains poorly defined. In the present study, we describe an assay for the quantification of UDP-Gal with subnanomolar sensitivity. This assay is based on the enzymatic conversion of UDP-Gal to UDP, using 1-4-β-galactosyltransferase. UDP is subsequently phosphorylated by nucleoside diphosphokinase in the presence of [γ-32P]ATP and the formation of [γ-32P]UTP is monitored by high-performance liquid chromatography. The overall conversion of UDP-Gal to [γ-32P]UTP was linear between 0.5 and 30 nM UDP-Gal. Extracellular UDP-Gal was detected on resting cultures of various cell types, and increased release of UDP-Gal was observed in 1321N1 human astrocytoma cells stimulated with the protease-activated receptor agonist thrombin. The occurrence of regulated release of UDP-Gal suggests that, in addition to its role in glycosylation reactions, UDP-Gal is an important extracellular signaling molecule.  相似文献   

3.
Guo H  Li L  Wang PG 《Biochemistry》2006,45(46):13760-13768
The O-antigen of lipopolysaccharide in Gram-negative bacteria plays an important role in bacterium-host interactions. Escherichia coli O86:B7 O-unit contains five sugar residues: one fucose (Fuc) and two each of N-acetylgalactosamine (GalNAc) and galactose (Gal). The entire O-antigen gene cluster was previously sequenced: orf1 was assigned the gne gene for the biosynthesis of UDP-GalNAc. To confirm this annotation, overexpression, purification, and biochemical characterization of Gne were performed. By using capillary electrophoresis, we showed that Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal almost equally well. The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc, and UDP-GalNAc are 370, 295, 323, and 373 microM, respectively. The comparison of kinetic parameters of Gne from Escherichia coli O86:B7 to those of other characterized UDP-GlcNAc/Glc 4-epimerases indicated that it has relaxed specificity toward the four substrates, the first characterized enzyme to have this activity in the O-antigen biosynthesis. Moreover, the calculated kcat/Km values for UDP-GalNAc and UDP-Gal are approximately 2-4 times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly more efficient for the epimerization of UDP-GalNAc and UDP-Gal. One mutation (S306Y) resulted in a loss of epimerase activity for non-acetylated substrates by about 5-fold but totally abolished the activity for N-acetylated substrates, indicating that residue S306 plays an important role in the determination of substrate specificity.  相似文献   

4.
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved ‘transient keto intermediate’ mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.  相似文献   

5.
UDP-galactose 4-epimerase catalyzes the interconversion of UDP-Gal and UDP-Glc during normal galactose metabolism. The mammalian form of the enzyme, unlike its Escherichia coli counterpart, can also interconvert UDP-GalNAc and UDP-GlcNAc. One key feature of the epimerase reaction mechanism is the rotation of a 4-ketopyranose intermediate in the active site. By comparing the high resolution x-ray structures of both the bacterial and human forms of the enzyme, it was previously postulated that the additional activity in the human epimerase was due to replacement of the structural equivalent of Tyr-299 in the E. coli enzyme with a cysteine residue, thereby leading to a larger active site volume. To test this hypothesis, the Y299C mutant form of the E. coli enzyme was prepared and its three-dimensional structure solved as described here. Additionally, the Y299C mutant protein was assayed for activity against both UDP-Gal and UDP-GalNAc. These studies have revealed that, indeed, this simple mutation did confer UDP-GalNAc/UDP-GlcNAc converting activity to the bacterial enzyme with minimal changes in its three-dimensional structure. Specifically, although the Y299C mutation in the bacterial enzyme resulted in a loss of epimerase activity with regard to UDP-Gal by almost 5-fold, it resulted in a gain of activity against UDP-GalNAc by more than 230-fold.  相似文献   

6.
A series of C-glycosyl ethylphosphonophosphate analogues of UDP-Glc, UDP-Gal, UDP-GlcNAc and GDP-Fuc were synthesized from the corresponding C-glycosyl ethylphosphonic acids. Analogues were obtained as alpha-anomers through either diastereoselective photo-induced radical addition of glycosyl bromides (D-Glc, D-Gal and L-Fuc) to diethyl vinylphosphonate, or a multi-step sequence (D-GlcNAc), with subsequent coupling with morpholidate-activated nucleotide monophosphates. The in vitro inhibitory activity of UDP-Gal, GDP-Fuc and UDP-GlcNAc analogues towards glycosyltransferases (beta-1,4-GalT, FUT3 and LgtA) was evaluated through a competition fluorescence assay and IC(50) values of 40 microM, 2 mM and 3.5 mM were obtained, respectively.  相似文献   

7.
Glycosyltransferases A and B utilize the donor substrates UDP-GalNAc and UDP-Gal, respectively, in the biosynthesis of the human blood group A and B trisaccharide antigens from the O(H)-acceptor substrates. These enzymes were cloned as synthetic genes and expressed in Escherichia coli, thereby generating large quantities of enzyme for donor specificity evaluations. The amino acid sequence of glycosyltransferase A only differs from glycosyltransferase B by four amino acids, and alteration of these four amino acid residues (Arg-176-->Gly, Gly-235-->Ser, Leu-266-->Met and Gly-268-->Ala) can change the donor substrate specificity from UDP-GalNAc to UDP-Gal. Crossovers in donor substrate specificity have been observed, i.e., the A transferase can utilize UDP-Gal and B transferase can utilize UDP-GalNAc donor substrates. We now report a unique donor specificity for each enzyme type. Only A transferase can utilize UDP-GlcNAc donor substrates synthesizing the blood group A trisaccharide analog alpha-D-Glcp-NAc-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2 )7CH3 (4). Recombinant blood group B was shown to use UDP-Glc donor substrates synthesizing blood group B trisaccharide analog alpha-D-Glcp-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2) 7CH3 (5). In addition, a true hybrid enzyme was constructed (Gly-235-->Ser, Leu-266-->Met) that could utilize both UDP-GlcNAc and UDP-Glc. Although the rate of transfer with UDP-GlcNAc by the A enzyme was 0.4% that of UDP-GalNAc and the rate of transfer with UDP-Glc by the B enzyme was 0.01% that of UDP-Gal, these cloned enzymes could be used for the enzymatic synthesis of blood group A and B trisaccharide analogs 4 and 5.  相似文献   

8.
We have developed a simple and highly sensitive HPLC method for determination of cellular levels of sugar nucleotides and related nucleotides in cultured cells. Separation of 9 sugar nucleotides (CMP-Neu5Ac, CMP-Neu5Gc, CMP-KDN, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Fuc, GDP-Man) and 12 nucleotides (AMP, ADP, ATP, CMP, CDP, CTP, GMP, GDP, GTP, UMP, UDP, and UTP) was examined by reversed-phase HPLC and high-performance anion-exchange chromatography (HPAEC). Although the reversed-phase HPLC, using an ion-pairing reagent, gave a good separation of the 12 nucleotides, it did not separate sufficiently the sugar nucleotides for quantification. On the other hand, the HPAEC method gave an excellent and reproducible separation of all nucleotides and sugar nucleotides with high sensitivity and reproducibility. We applied the HPAEC method to determine the intracellular sugar nucleotide levels of cultured Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five, BTN-TN-5B1-4) insect cells, and compared them with those in Chinese hamster ovary (CHO-K1) cells. Sf9 and High Five cells showed concentrations of UDP-GlcNAc, UDP-Gal, UDP-Glc, GDP-Fuc, and GDP-Man equal to or higher than those in CHO cells. CMP-Neu5Ac was detected in CHO cells, but it was not detected in Sf9 and High Five cells. In conclusion, the newly developed HPAEC method could provide valuable information necessary for generating sialylated complex-type N-glycans in insect or other cells, either native or genetically manipulated.  相似文献   

9.
Treatment with NH4Cl of mouse thymocytes renders their plasma membrane permeable to sugar nucleotides both inwards and outwards. Using this model, we studied the entry and utilization of CMP-NeuAc, GDP-Fuc and UDP-Gal into intracellular vesicles in situ. It is shown that CMP-NeuAc and GDP-Fuc enter the vesicles in a manner indicating a carrier-mediated transport (substrate saturation curve, inhibition by substrate analogues, temperature dependence) and are entrapped in their uncleaved form. This leads to the formation of an intralumenal pool of these precursors which can be further utilized by the sialyltransferases and fucosyltransferases. The occurrence of an endogenous pool of CMP-NeuAc and GDP-Fuc is demonstrated by the fact that, when the vesicles are disrupted by detergent, the release of the endogenous sugar nucleotides causes an isotopic dilution of the labelled precursors added to measure the glycosyltransferase activities. In contrast, no accumulation of UDP-Gal has been detected, suggesting that transport and transfer reaction are simultaneous events. However, experiments with UDP 2',3'-dialdehyde indicate that UDP-Gal is not transported through the membrane by galactosyltransferase action but by a distinct carrier molecule.  相似文献   

10.
The effect of anion-specific inhibitors on the utilization of the sugar nucleotides (UDP-glucose, GDP-mannose, and UDP-N-acetylglucosamine) required for the formation of the oligosaccharide-lipid involved in N-glycosylation has been studied in intact endoplasmic reticulum (ER) vesicles from thyroid. Of the reagents tested, the nonpenetrating probe DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) and its dihydro derivative (H2DIDS) were the most effective, causing a pronounced impairment in the synthesis from UDP-Glc of dolichyl phosphate (Dol-P) glucose (50% reduction at 60 microM DIDS) and in the incorporation of glucose into oligosaccharide-lipid and N-glycosylated protein; in contrast, no inhibition was observed in the formation from UDP-Glc of a glycogen-like proteoglucan. The specificity of the DIDS effect was indicated by the finding that methyl isothiocyanate, a nonanionic amino-reactive agent, demonstrated negligible inhibition. While DIDS also effected a block in the formation of Dol-P-P-GlcNAc from UDP-GlcNAc, no impairment in the utilization of GDP-Man for Dol-P-Man synthesis was observed. Since the DIDS inhibition of UDP-Glc and UDP-GlcNAc utilization was maintained after disruption of the ER vesicles with Triton, even when the incubations were supplemented with Dol-P, it appears that this reagent does not interact with sugar nucleotide translocator proteins but rather with the cytoplasmically oriented anion binding sites of glycosyltransferases (UDP-Glc- and UDP-GlcNAc:Dol-P glucosyl- and GlcNAc-1-P transferases). This is consistent with the protease sensitivity of these enzymes in the intact ER vesicles. Incubation of the vesicles with tritiated H2DIDS (8 microM) introduced radioactivity into membrane polypeptides with molecular weights of about 52,000 and 31,000 as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that this inhibitor may prove useful as an affinity label in further studies of some of the glycosyltransferases involved in the synthesis of lipid-monosaccharide intermediates.  相似文献   

11.
Saturation transfer difference NMR experiments on human blood group B alpha-(1,3)-galactosyltransferase (GTB) for the first time provide a comprehensive set of binding epitopes of donor substrate analogs in relation to the natural donor UDP-Gal. This study revealed that the enzyme binds several UDP-activated sugars, including UDP-Glc, UDP-GlcNAc, and UDP-GalNAc. In all cases, UDP is the dominant binding epitope. To identify the minimum requirements for specific binding, a detailed analysis utilizing a fragment-based approach was employed. The binding of donor substrate to GTB is essentially controlled by the base as a "molecular anchor." Uracil represents the smallest fragment that is recognized, whereas CDP, AMP, and GDP do not exhibit any significant binding affinity for the enzyme. The ribose and beta-phosphate moieties increase the affinity of the ligands, whereas the pyranose sugar apparently weakens the binding, although this part of the molecule controls the specificity of the enzyme. Accordingly, UDP represents the best binder. The binding affinities of UDP-Gal, UDP-Glc, and UMP are about the same, but lower than that of UDP. Furthermore, we observed that beta-D-galactose and alpha-D-galactose bind weakly to GTB. Whereas beta-D-galactose binds to the acceptor and donor sites, it is suggested that alpha-D-galactose occupies a third hitherto unknown binding pocket. Finally, our experiments revealed that modulation of enzymatic activity by metal ions critically depends on the total enzyme concentration, raising the question as to which of the bivalent metal cations Mg(2+) and Mn(2+) is more relevant under physiological conditions.  相似文献   

12.
We have examined the coupling and charge stoichiometry for UDP-GlcNAc transport into Golgi-enriched vesicles from rat liver. In the absence of added energy sources, these Golgi vesicles concentrate UDP-GlcNAc at least 20-fold, presumably by exchange with endogenous nucleotides. Under the conditions used, extravesicular degradation of UDP-GlcNAc has been eliminated, and less than 15% of the internalized radioactivity becomes associated with endogenous macromolecules. Of the remaining intravesicular label, 85% remains unmetabolized UDP-[3H]GlcNAc, and approximately 15% is hydrolyzed to [3H]GlcNAc-1-phosphate. Efflux of accumulated UDP-[3H]GlcNAc is induced by addition of UMP, UDP, or UDP-galactose to the external medium. Permeabilization of Golgi vesicles causes a rapid and nearly complete loss of internal UDP-[3H]GlcNAc, indicating that the results reflect transport and not binding. Moreover, transport of UDP-[3H]GlcNAc into these Golgi vesicles was stimulated up to 5-fold by mechanically preloading vesicles with either UDP-GlcNAc or UMP. The response of UMP/UMP exchange and UMP/UDP-GlcNAc exchange to alterations in intravesicular and extravesicular pH suggests that UDP-GlcNAc enters the Golgi apparatus in electroneutral exchange with the dianionic form of UMP.  相似文献   

13.
Galactinol, 1-O-(alpha-D-galactopyranosyl)-myo-inositol, was produced from sucrose as a starting material. UDP-Glc was prepared with sucrose and UDP using sucrose synthase partially purified from sweet potato roots. Then, the UDP-Glc was converted to UDP-Gal using yeast UDP-Gal 4-epimerase from a commercial source. Finally, galactinol was produced from the UDP-Gal and myo-inositol using galactinol synthase partially purified from cucumber leaves. The product was identified as galactinol by the retention times of HPLC, alpha-galactosidase digestion, and NMR spectrometry.  相似文献   

14.
Membrane transport of sugar donors to the glycosylation sites   总被引:1,自引:0,他引:1  
The assembly of N-linked glycoproteins in eukaryotic cells begins with the segregation of these molecules within the lumen of intracellular vesicles. Since the sugar nucleotides are cytoplasmic molecules, translocation of the sugar moiety across the membrane appears as a crucial event in the glycoprotein synthesis. This N-glycosylation process occurs in two different cytological sites: in the rough endoplasmic reticulum, the stepwise synthesis of a large lipid-linked oligosaccharide takes place, as well as its transfer to protein; then after trimming the immature glycoprotein is further elongated in the Golgi apparatus. In this paper, a brief review will be given of the present knowledge on the sugar donor transport across the membrane barrier to the glycosylation site. Based upon the transmembrane orientation of oligosaccharide lipid intermediates and on the localization of the glycosyltransferase active sites, the different processes required to translocate the sugar moieties during the preassembly of the dolichyl-pyrophosphate-oligosaccharides will be examined. Combining the different results, obtained in several laboratories, it is suggested that the Man5-GlcNAc2-lipid is synthesized on the cytoplasmic side directly from the sugar-nucleotides and then translocated to the lumenal face where the Glc3-Man9-GlcNAc2-lipid is completed using Man-P-Dol and Glc-P-Dol as transmembrane carriers of these sugars. Concerning the elongation process leading to assembly of the antennae of N-acetyllactosamine type oligosaccharides, specific carriers for sugar nucleotides have been described as Golgi markers. Several authors have characterized such carriers for UDP-Gal, GDP-Fuc, CMP-NeuAc, UDP-GlcNAc and UDP-Glc using microsomal vesicles and similar results have been obtained in our laboratory using plasma membrane permeabilized cells. This carrier-mediated process leads to the formation of an intralumenal pool whose biological significance will be discussed. The translocation process of sugar donors occurring in the rough endoplasmic reticulum via lipid intermediates as well as in the Golgi apparatus via specific carriers would represent a regulation step based on the availability of the substrates for the glycosylation.  相似文献   

15.
Metabolic labelling of mouse thymocytes with radioactive mannose or glucosamine leads to the formation of labelled GDP-Man and UDP-GlcNAc. Using isotonic ammonium chloride treatment which renders the plasma membrane of thymocytes permeable to sugar nucleotides, we demonstrate that, in contrast to GDP-Man, a pool of UDP-GlcNAc remains associated with the cells after plasma membrane permeabilization. These observations are confirmed in experiments in which permeabilized thymocytes are incubated with exogenous labelled GDP-Man and UDP-GlcNAc, and we show that only UDP-GlcNAc is accumulated into sealed intracellular vesicles. This accumulation is a saturable process which can be inhibited by UDP, demonstrating the occurrence of a specific carrier. This transport mechanism can be blocked by covalent attachment of a non-permeant inhibitor UDP-dialdehyde without affecting the N-acetylglucosaminyltransferase itself. The fact that this carrier-mediated transport is not inhibited by tunicamycin indicates that this translocation process of UDP-GlcNAc does not involve lipid intermediates.  相似文献   

16.
Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.  相似文献   

17.
UDP-galactose 4'-epimerase (GALE) catalyzes the final step in the Leloir pathway of galactose metabolism, interconverting UDP-galactose and UDP-glucose. Unlike its Escherichia coli counterpart, mammalian GALE also interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. Considering the key roles played by all four of these UDP-sugars in glycosylation, human GALE therefore not only contributes to the Leloir pathway, but also functions as a gatekeeper overseeing the ratios of important substrate pools required for the synthesis of glycosylated macromolecules. Defects in human GALE result in the disorder epimerase-deficiency galactosemia. To explore the relationship among GALE activity, substrate specificity, metabolic balance, and galactose sensitivity in mammalian cells, we employed a previously described GALE-null line of Chinese hamster ovary cells, ldlD. Using a transfection protocol, we generated ldlD derivative cell lines that expressed different levels of wild-type human GALE or E. coli GALE and compared the phenotypes and metabolic profiles of these lines cultured in the presence versus absence of galactose. We found that GALE-null cells accumulated abnormally high levels of Gal-1-P and UDP-Gal and abnormally low levels of UDP-Glc and UDP-GlcNAc in the presence of galactose and that human GALE expression corrected each of these defects. Comparing the human GALE- and E. coli GALE-expressing cells, we found that although GALE activity toward both substrates was required to restore metabolic balance, UDP-GalNAc activity was not required for cell proliferation in the presence of otherwise cytostatic concentrations of galactose. Finally, we found that uridine supplementation, which essentially corrected UDP-Glc and, to a lesser extent UDP-GlcNAc depletion, enabled ldlD cells to proliferate in the presence of galactose despite the continued accumulation of Gal-1-P and UDP-Gal. These data offer important insights into the mechanism of galactose sensitivity in epimerase-impaired cells and suggest a potential novel therapy for patients with epimerase-deficiency galactosemia.  相似文献   

18.
A mixture of UDP-N-acetylglucosamine labeled with different radioisotopes in the uridine and glucosamine was used to show that the intact sugar nucleotide was translocated across the membrane of vesicles derived from rat liver rough endoplasmic reticulum (RER) and Golgi apparatus. Translocation was dependent on temperature, saturable at high concentrations of sugar nucleotide, and inhibited by treatment of vesicles with proteases, suggesting protein carrier mediated transport. Translocation of UDP-GlcNAc by RER-derived vesicles appeared to be specific since these vesicles were unable to translocate UDP-galactose, in contrast to those derived from the Golgi apparatus. Preliminary results suggest that the mechanism of UDP-GlcNAc translocation into RER-derived vesicles is via a coupled exchange with lumenal nucleoside monophosphate. This is similar to the recently postulated mechanism for translocation of sugar nucleotides into vesicles derived from the Golgi apparatus.  相似文献   

19.
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.  相似文献   

20.
Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号