首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Net phosphocreatine (PCr) resynthesis during muscle contraction is a paradoxical phenomenon because it occurs under conditions of high energy demand. The metabolic underpinnings of this phenomenon were analyzed non-invasively using 31P-magnetic resonance spectroscopy in rat gastrocnemius muscle (n=11) electrically stimulated (7.6 Hz, 6 min duration) in situ under ischemic and normoxic conditions. During ischemic stimulation, [PCr] initially fell to a steady state (9±5% of resting concentration) which was maintained for the last 5 min of stimulation, whereas isometric force production decreased to a non-measurable level beyond 3 min. Throughout normoxic stimulation, [PCr] and force production declined to a steady state after respectively 1 min (5±3% of resting concentration) and 3.25 min (21±8% of initial value) of stimulation. Contrary to the observations under ischemia, a paradoxical net PCr resynthesis was recorded during the last 2 min of normoxic stimulation and was not accompanied by any improvement in force production. These results demonstrate that the paradoxical net PCr resynthesis recorded in contracting muscle relies exclusively on oxidative energy production and could occur in inactivated fibers, similarly to PCr resynthesis during post-exercise recovery.  相似文献   

2.
Electrical muscle stimulation (Mstim) at a low or high frequency is associated with failure of force production, but the exact mechanisms leading to fatigue in this model are still poorly understood. Using 31P magnetic resonance spectroscopy (31PMRS), we investigated the metabolic changes in rabbit tibialis anterior muscle associated with the force decline during Mstim at low (10 Hz) and high (100 Hz) frequency. We also simultaneously recorded the compound muscle mass action potential (M-wave) evoked by direct muscle stimulation, and we analyzed its post-Mstim variations. The 100-Hz Mstim elicited marked M-wave alterations and induced mild metabolic changes at the onset of stimulation followed by a paradoxical recovery of phosphocreatine (PCr) and pH during the stimulation period. On the contrary, the 10-Hz Mstim produced significant PCr consumption and intracellular acidosis with no paradoxical recovery phenomenon and no significant changes in M-wave characteristics. In addition, the force depression was linearly linked to the stimulation-induced acidosis and PCr breakdown. These results led us to conclude that force failure during 100-Hz Mstim only results from an impaired propagation of muscle action potentials with no metabolic involvement. On the contrary, fatigue induced by 10-Hz Mstim is closely associated with metabolic changes with no alteration of the membrane excitability, thereby underlining the central role of muscle energetics in force depression when muscle is stimulated at low frequency. Finally, our results further indicate a reduction of energy cost of contraction when stimulation frequency is increased from 10 to 100 Hz.  相似文献   

3.
Previous studies have suggested the recovery of phosphocreatine (PCr) after exercise is at least second-order in some conditions. Possible explanations for higher-order PCr recovery kinetics include heterogeneity of oxidative capacity among skeletal muscle fibers and ATP production via glycolysis contributing to PCr resynthesis. Ten human subjects (28 +/- 3 yr; mean +/- SE) performed gated plantar flexion exercise bouts consisting of one contraction every 3 s for 90 s (low-intensity) and three contractions every 3 s for 30 s (high-intensity). In a parallel gated study, the sciatic nerve of 15 adult male Sprague-Dawley rats was electrically stimulated at 0.75 Hz for 5.7 min (low intensity) or 5 Hz for 2.1 min (high intensity) to produce isometric contractions of the posterior hindlimb muscles. [(31)P]-MRS was used to measure relative [PCr] changes, and nonnegative least-squares analysis was utilized to resolve the number and magnitude of exponential components of PCr recovery. Following low-intensity exercise, PCr recovered in a monoexponential pattern in humans, but a higher-order pattern was typically observed in rats. Following high-intensity exercise, higher-order PCr recovery kinetics were observed in both humans and rats with an initial fast component (tau < 15 s) resolved in the majority of humans (6/10) and rats (5/8). These findings suggest that heterogeneity of oxidative capacity among skeletal muscle fibers contributes to a higher-order pattern of PCr recovery in rat hindlimb muscles but not in human triceps surae muscles. In addition, the observation of a fast component following high-intensity exercise is consistent with the notion that glycolytic ATP production contributes to PCr resynthesis during the initial stage of recovery.  相似文献   

4.
In skeletal muscle, phosphocreatine (PCr) recovery from submaximal exercise has become a reliable and accepted measure of muscle oxidative capacity. During exercise, O2 availability plays a role in determining maximal oxidative metabolism, but the relationship between O2 availability and oxidative metabolism measured by 31P-magnetic resonance spectroscopy (MRS) during recovery from exercise has never been studied. We used 31P-MRS to study exercising human gastrocnemius muscle under conditions of varied fractions of inspired O2 (FIO2) to test the hypothesis that varied O2 availability modulates PCr recovery from submaximal exercise. Six male subjects performed three bouts of 5-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery in a 1.5-T magnet while breathing three different FIO2 concentrations (0.10, 0. 21, and 1.00). Under each FIO2 treatment, the PCr recovery time constants were significantly different, being longer in hypoxia [33. 5 +/- 4.1 s (SE)] and shorter in hyperoxia (20.0 +/- 1.8 s) than in normoxia (25.0 +/- 2.7 s) (P 相似文献   

5.
Cellularenergy balance requires that the physiological demands by ATP-utilizingfunctions be matched by ATP synthesis to sustain muscle activity. Wedevised a new method of analysis of these processes in data from singleindividuals. Our approach is based on the logic of current informationon the major mechanisms involved in this energy balance and canquantify not directly measurable parameters that govern thosemechanisms. We use a mathematical model that simulates by ordinary,nonlinear differential equations three components of cellularbioenergetics (cellular ATP flux, mitochondrial oxidativephosphorylation, and creatine kinase kinetics). We incorporate dataunder resting conditions, during the transition toward a steady stateof stimulation and during the transition during recovery back to theoriginal resting state. Making use of prior information about thekinetic parameters, we fitted the model to previously published dynamicphosphocreatine (PCr) and inorganic phosphate (Pi) dataobtained in normal subjects with an activity-recovery protocol using31P nuclear magnetic resonance spectroscopy. The experimentconsisted of a baseline phase, an ischemic phase (during which musclestimulation and PCr utilization occurred), and an aerobic recoveryphase. The model described satisfactorily the kinetics of the changes in PCr and Pi and allowed estimation of the maximalvelocity of oxidative phosphorylation and of the net ATP flux inindividuals both at rest and during stimulation. This work lays thefoundation for a quantitative, model-based approach to the study of invivo muscle energy balance in intact muscle systems, including human muscle.

  相似文献   

6.
We tested whether preferred running event in track athletes would correlate with the initial rate of phosphocreatine (PCr) resynthesis following submaximal exercise. PCr recovery was measured in the calf muscles of 16 male track athletes and 7 male control subjects following 5 min of repeated plantar flexion against resistance. Pi, PCr, and pH were measured using phosphorus magnetic resonance spectroscopy (31P MRS) with an 8-cm surface coil in a 1.8-T magnet. During exercise, work levels were gradually increased to deplete PCr to 50-60% of the initial value. No drop in pH was seen in any of the subjects during this exercise. The areas of the PCr peaks following exercise were fit to monoexponential curves. Two or three tests were performed on each subject and the results averaged. Athletes were divided into three groups based on their primary event: sprinters running 400 m or less, middle-distance athletes running 400-1500 m, and long-distance athletes running farther than 1500 m. The maximal rates of PCr resynthesis (mmol.min-1.kg-1 muscle weight) were 64.8 +/- 8.6, for long-distance runners; 41.4 +/- 11, for middle-distance runners; 32.0 +/- 7.0, for sprinters; and 38.6 +/- 10, for controls (mean +/- SE). The faster PCr recovery rates seen in long-distance runners compared with sprinters indicate greater oxidative capacity, which is consistent with the known differences between athletes in these events.  相似文献   

7.
Five women and 3 men (29.8 +/- 1.4 yr) performed dynamic knee-extension exercise inside a magnetic resonance system (means +/- SE). Two trials were performed 7-14 days apart, consisting of a 4- to 5-min exhaustive exercise bout. To determine quadriceps cost of contraction, brief static and dynamic contractions were performed pre- and postexercise. (31)P spectra were used to determine pH and relative concentrations of P(i), phosphocreatine (PCr), and betaATP. Subjects consumed 0.3 g. kg(-1). day(-1) of a placebo (trial 1) or creatine (trial 2) for 5 days before each trial. After creatine supplementation, resting DeltaPCr increased from 40.7 +/- 1.8 to 46. 6 +/- 1.1 mmol/kg (P = 0.04) and PCr during exercise declined from -29.6 +/- 2.4 to -34.1 +/- 2.8 mmol/kg (P = 0.02). Muscle static (DeltaATP/N) and dynamic (DeltaATP/J) costs of contraction were unaffected by creatine supplementation as well as were ATP, P(i), pH, PCr resynthesis rate, and muscle strength and endurance. DeltaATP/J and DeltaATP/N were greatest at the onset of the exercise protocol (P < 0.01). In summary, creatine supplementation increased muscle PCr concentration, which did not affect muscle ATP cost of contraction.  相似文献   

8.
This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 +/- 1 and 54 +/- 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 +/- 1 and 78 +/- 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10-15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 +/- 2% of the initial tension, a value significantly lower than the 71 +/- 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 +/- 2% at 0 and 70 +/- 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 +/- 3 vs. 93 +/- 1%). As before, force production at 75-Hz stimulation did not fully recover until 10-15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The purpose of this study was to investigate the effects of high-intensity interval training (3 days/wk for 5 wk), provoking large changes in muscle lactate and pH, on changes in intracellular buffer capacity (betam(in vitro)), monocarboxylate transporters (MCTs), and the decrease in muscle lactate and hydrogen ions (H+) after exercise in women. Before and after training, biopsies of the vastus lateralis were obtained at rest and immediately after and 60 s after 45 s of exercise at 190% of maximal O2 uptake. Muscle samples were analyzed for ATP, phosphocreatine (PCr), lactate, and H+; MCT1 and MCT4 relative abundance and betam(in vitro) were also determined in resting muscle only. Training provoked a large decrease in postexercise muscle pH (pH 6.81). After training, there was a significant decrease in betam(in vitro) (-11%) and no significant change in relative abundance of MCT1 (96 +/- 12%) or MCT4 (120 +/- 21%). During the 60-s recovery after exercise, training was associated with no change in the decrease in muscle lactate, a significantly smaller decrease in muscle H+, and increased PCr resynthesis. These results suggest that increases in betam(in vitro) and MCT relative abundance are not linked to the degree of muscle lactate and H+ accumulation during training. Furthermore, training that is very intense may actually lead to decreases in betam(in vitro). The smaller postexercise decrease in muscle H+ after training is a further novel finding and suggests that training that results in a decrease in H+ accumulation and an increase in PCr resynthesis can actually reduce the decrease in muscle H+ during the recovery from supramaximal exercise.  相似文献   

10.
Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c).  相似文献   

11.
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism.  相似文献   

12.
To determine the effects of epinephrine (EPI) infusion on muscle glycogenolysis and force production, the quadriceps muscles of both legs in six subjects were intermittently stimulated for 30 min. Contractions lasted 1.6 s (20 Hz) and were separated by 1.6 s of rest. EPI was infused (approximately 0.14 micrograms.kg body wt-1.min-1) in one leg during the last 15 min and the vastus lateralis was biopsied at rest (control leg only) and after 15, 18 (EPI leg only), and 30 min of stimulation. EPI infusion doubled the mole fraction of phosphorylase a (22.5 +/- 4.1 to 44.8 +/- 9.0%) and glycogenolysis (2.16 +/- 0.72 to 5.45 +/- 0.81 mmol glucosyl U.kg dry muscle wt-1.min-1) during stimulation. Muscle glucose 6-phosphate increased from 3.04 +/- 0.17 to 6.43 +/- 0.20 mmol/kg dry muscle wt, and lactate increased from 25.8 +/- 4.4 to 34.3 +/- 4.6 mmol/kg after 3 min of EPI infusion. Isometric force production was unaltered by EPI infusion. These results demonstrate a strong glycogenolytic effect of EPI infusion during prolonged electrical stimulation and suggest that the extra pyruvate formed was converted mainly to lactate. Exclusive anaerobic metabolism of the extra substrate would provide only a 10% increase in total ATP production, possibly accounting for the lack of improvement in force production. We suggest that the decrease in force production during prolonged electrical stimulation is related to decreased excitation of the contractile mechanism rather than inhibition of cross-bridge turnover caused by a shortage of energy or accumulation of hyproducts.  相似文献   

13.
The influence of systemic hypoxia on the endurance performance of tongue protrudor and retractor muscles was examined in anesthetized, ventilated rats. Tongue protrudor (genioglossus) or retractor (hyoglossus and styloglossus) muscles were activated via medial or lateral XII nerve branch stimulation (0.1-ms pulse; 40 Hz; 330-ms trains; 1 train/s). Maximal evoked potentials (M waves) of genioglossus and hyoglossus were monitored with electromyography. Fatigue tests were performed under normoxic and hypoxic (arterial PO(2) = 50 +/- 1 Torr) conditions in separate animals. The fatigue index (FI; %initial force) after 5 min of normoxic stimulation was 85 +/- 6 and 79 +/- 7% for tongue protrudor and retractor muscles, respectively; these values were significantly lower during hypoxia (protrudor FI = 52 +/- 10, retractor FI = 18 +/- 6%; P < 0.05). Protrudor and retractor muscle M-wave amplitude declined over the course of the hypoxic fatigue test but did not change during normoxia (P < 0.05). We conclude that hypoxia attenuates tongue protrudor and retractor muscle endurance performance; potential mechanisms include neuromuscular transmission failure and/or diminished sarcolemmal excitability.  相似文献   

14.
The mechanism of muscle fatigue was studied by 31P-MRS. During tetanic contraction for 2 minutes(min), the tension measured with a strain gauge and Phosphocreatine(PCr)/Inorganic phosphate(Pi)+ Phosphomonoester(PME) ratio decreased to 31.5 +/- 4.4% of the control value and 0.6 +/- 0.1, respectively. The intracellular pH(pH) also decreased to 6.62 +/- 0.04. Toward the end of the stimulation, the tension decreased to 25.3 +/- 1.9% of the control value. However, during 20min stimulation, the PCr/(Pi+PME) ratio increased to 2.5 +/- 0.5 and the pH to 6.91 +/- 0.04. These results show that muscular fatigue is ascribable not to a decreased level of high energy metabolites required for actomyosin ATPase, but to an increase in the threshold intensity of excitation in excitation-contraction coupling.  相似文献   

15.
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.  相似文献   

16.
We examined the effects of increasing acetylcarnitine and acetyl-CoA availability at rest, independent of pyruvate dehydrogenase complex (PDC) activation, on energy production and tension development during the rest-to-work transition in canine skeletal muscle. We aimed to elucidate whether the lag in PDC-derived acetyl-CoA delivery toward the TCA cycle at the onset of exercise can be overcome by increasing acetyl group availability independently of PDC activation or is intimately dependent on PDC-derived acetyl-CoA. Gracilis muscle pretreated with saline or sodium acetate (360 mg/kg body mass) (both n = 6) was sampled repeatedly during 5 min of ischemic contraction. Acetate increased acetylcarnitine and acetyl-CoA availability (both P < 0.01) above control at rest and throughout contraction (P < 0.05), independently of differences in resting PDC activation between treatments. Acetate reduced oxygen-independent ATP resynthesis approximately 40% (P < 0.05) during the first minute of contraction. No difference in oxygen-independent ATP resynthesis existed between treatments from 1 to 3 min of contraction; however, energy production via this route increased approximately 25% (P < 0.05) above control in the acetate-treated group during the final 2 min of contraction. Tension development was approximately 20% greater after 5-min contraction after acetate treatment than in control (P < 0.05). In conclusion, at the immediate onset of contraction, when PDC was largely inactive, increasing cellular acetyl group availability overcame inertia in mitochondrial ATP regeneration. However, after the first minute, when PDC was near maximally activated in both groups, it appears that PDC-derived acetyl-CoA, rather than increased cellular acetyl group availability per se, dictated mitochondrial ATP resynthesis.  相似文献   

17.
The purpose of this study was to examine with (31)P-magnetic resonance spectroscopy energy metabolism during repeated plantar flexion isometric exercise (Ex-1-Ex-4) at 32 +/- 1 and 79 +/- 4% of maximal voluntary contraction (MVC) before and during a creatine (Cr) feeding period of 5 g/day for 11 days. Eight trained male subjects participated in the study. ATP was unchanged with Cr supplementation at rest and during exercise at both intensities. Resting muscle phosphocreatine (PCr) increased (P < 0.05) from 18.3 +/- 0.9 (before) to 19.6 +/- 1.0 mmol/kg wet wt after 9 days. At 79% MVC, PCr used, P(i) accumulated, and pH at the end of Ex-1-Ex-4 were similar after 4 and 11 days of Cr supplementation. In contrast, PCr utilization and P(i) accumulation were lower and pH was higher for exercise at 32% MVC with Cr supplementation, suggesting aerobic resynthesis of PCr was more rapid during exercise. These results suggest that elevating muscle Cr enhances oxidative phosphorylation during mild isometric exercise, where it is expected that oxygen delivery matches demands and predominantly slow-twitch motor units are recruited.  相似文献   

18.
We tested the hypothesis that contracting skeletal muscle can rapidly restore force development during reperfusion after brief total ischemia and that this rapid recovery depends on O(2) availability and not an alternate factor related to blood flow. Isolated canine gastrocnemius muscle (n = 5) was stimulated to contract tetanically (isometric contraction elicited by 8 V, 0.2-ms duration, 200-ms trains, at 50-Hz stimulation) every 2 s until steady-state conditions of muscle blood flow (controlled by pump perfusion) and developed force were attained (3 min). While maintaining the same stimulation pattern, muscle blood flow was then reduced to zero (complete ischemia) for 2 min. Normal blood flow was then restored to the contracting muscle; however, two distinct conditions of oxygenation (at the same blood flow) were sequentially imposed: deoxygenated blood (30 s), blood with normal arterial O(2) content (30 s), a return to deoxygenated blood (30 s), and finally a return to normal arterial O(2) content (90 s). During the ischemic period, force development fell to 39 +/- 6 (SE)% of normal (from 460 +/- 40 to 170 +/- 20 N/100 g). When muscle blood flow was restored to normal by perfusion with deoxygenated blood, developed force continued to decline to 140 +/- 20 N/100 g. Muscle force rapidly recovered to 310 +/- 30 N/100 g (P < 0.05) during the 30 s in which the contracting muscle was perfused with oxygenated blood and then fell again to 180 +/- 30 N/100 g when perfused with blood with low PO(2). These findings demonstrate that contracting skeletal muscle has the capacity for rapid recovery of force development during reperfusion after a short period of complete ischemia and that this recovery depends on O(2) availability and not an alternate factor related to blood flow restoration.  相似文献   

19.
Theoretical consideration and experimental findings of 31P nuclear magnetic resonance spectroscopy (NMR) studies of exercising human muscle suggest that a graded, steady-state work protocol is highly suitable for performance evaluation in health and disease. We describe a similar rat model for repeated 31P-NMR studies that follows many of the 31P-NMR features observed in normal human controls. Calf muscles of rats anesthetized with chloral hydrate were indirectly stimulated at four frequencies (0.25, 0.5, 1.0, and 2.0 Hz). It was found that 1) several steady states can be briefly maintained in this model; 2) work-induced phosphocreatine (PCr) fall and inorganic phosphate (Pi) rise is stoichiometric; 3) a linear relationship between stimulation rate and Pi/PCr was obtained, with a slope of 2.01 +/- 0.4 (+/- 2SD, n = 15); 4) no significant drop in ATP was observed, allowing the estimation of phosphorylation potential (PP) changes during this range of muscle work (PP at rest was 61,603 +/- 25,100 M-1 and fell to 6,700 +/- 900 M-1 at the end of exercise); and 5) poststimulation recovery was rapid, with a rate of 2.27 +/- 0.5 PCr/Pi U/min. This simple model can be used for prolonged studies of chronic animal muscle disorders.  相似文献   

20.
Gated phosphorus nuclear magnetic resonance (31P-NMR) spectra were acquired after 5 or 9 s of 5-Hz stimulation in rat and cat skeletal muscles, respectively. Net phosphocreatine (PCr) hydrolysis was associated with an intracellular alkalinization of 0.08 +/- 0.01 and 0.05 +/- 0.003 pH units in isolated perfused cat biceps and soleus, respectively, and 0.12 +/- 0.02 in the superficial predominantly fast-twitch white portion of gastrocnemius of anesthetized rats. The net change in [H+] expected from PCr hydrolysis was calculated, and apparent buffer capacity (beta) in intact muscles was calculated from beta = delta [H+]/delta pH. The beta of the same muscle types was also estimated from titration of muscle homogenates between pH 6.0 and 8.0. The contribution of Pi to total beta of the homogenates was subtracted to ascertain the non-Pi beta for each muscle. The non-Pi beta values were added to the actual amount of Pi present in the stimulated muscles to calculate a predicted beta at pH 7. The apparent beta calculated from PCr and pH changes in intact muscles and the predicted beta from homogenate titrations were in good agreement (38 +/- 9 vs. 38 slykes in cat biceps, 21 +/- 7 vs. 30 in cat soleus, and 30 +/- 6 vs. 27 in rat gastrocnemius). The results indicate that changes in pH during the first few seconds of contraction can be entirely accounted for by proton consumption via net PCr hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号