首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The activities of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase in Morris hepatoma 7800 C1 cells were studied. The cells were grown until they reached steady state (constant DNA content per dish) and then were cultured in the presence of fatty acids or alkylthioacetic acids, i.e., S-substituted fatty acid analogues. (2) The fatty acid analogues increased the activity of the cyanide-insensitive palmitoyl-CoA oxidase several-fold. The effect was dose-dependent; 5 microM tetradecylthioacetic acid (TTA) was sufficient to give a significant induction. With 20 microM TTA, the increase in enzyme activity was discernable after 3 h and reached a maximum after 3 days. The inducing effect of the alkylthioacetic acids increased with the length of the hydrophobic alkyl end of the analogue. The inducing ability disappeared when the fatty acid analogue was omega-oxidized to the corresponding dicarboxylic acid. Oxidation of the sulfur atom resulted in inhibited cellular uptake and abolished enzyme induction. (3) At higher concentrations (0.5-1 mM), normal fatty acids also induced cyanide-insensitive palmitoyl-CoA oxidation. Myristic acid was the most potent inducer, whereas fatty acids with shorter as well as longer carbon chains were less efficient. The inducing effect increased with the number of double bounds in the fatty acid. (4) The normal fatty acids as well as the fatty acid analogues also induced palmitoyl-CoA hydrolase, but the relative changes were much less pronounced than with the palmitoyl-CoA oxidase.  相似文献   

2.
1. Uptake and binding of dexamethasone to glucocorticoid receptor has been studied in Morris hepatoma 7800 C1 cells in relation to its effect on cell growth and peroxisomal beta-oxidation. 2. Intact cells showed saturable, specific dexamethasone binding of limited capacity and Scatchard analysis revealed one single class of binding sites with equilibrium dissociation constant (Kd) of 0.24 nM similar to other glucocorticoid receptors. However, the binding capacity of 24 fmol/mg cell protein is less than 5% of previously reported values. 3. Uptake of [3H]dexamethasone by intact cells was temperature dependent giving a linear Arrhenius plot with a calculated energy of activation of 58.5 kJ mol-1 x degree-1. 4. Cytosol fractions had specific binding proteins for glucocorticoid hormones with sedimentation coefficient of ca 7S. No specific binding sites for [3H]dexamethasone was demonstrated in purified membrane fractions. 5. Dexamethasone and the synthetic fatty acid analogue tetradecylthio acetic acid (TTA) both inhibited the growth of the 7800 C1 cells and induced the peroxisomal acyl-CoA oxidase activity. A combination of the two compounds gave additive effects. Both these effects of dexamethasone and TTA were counteracted by insulin. 6. We conclude that dexamethasone induces growth inhibition and enzyme induction by binding to functional intracellular glucocorticoid receptors. The action of dexamethasone is consistent with a dissolution in the membrane from where it diffuses passively into the cell and binds to specific receptors in an energy dependent step. 6. The synergistic action of dexamethasone and TTA and the counteraction exerted by insulin are not due to changes in the dexamethasone receptor affinity or binding capacity.  相似文献   

3.
(1) The rate of palmitate oxidation in the 7800 C1 Morris hepatoma cells was about 60% of the activity observed in hepatocytes. The stimulatory effect of glucagon in hepatocytes was not observed in the hepatoma cells. The rate of fatty acid synthesis from [2-14C]acetate in the hepatoma cells was 1/20 of the activity in hepatocytes. The conversion of [2-14C]acetate to cholesterol was not different in the two kinds of cell. (2) Acetyl-CoA carboxylase and fatty acid synthetase were significantly decreased in the hepatoma cells. The hepatoma cells had, however, raised activities of malate dehydrogenase (decarboxylating), and glucose-6-phosphate and 6-phosphogluconate dehydrogenases. (3) The activities of the enzymes were not affected by different concentrations of glucose or palmitate in the culture medium. Insulin, dexamethasone, triiothyronine and glucagon had no effect on the enzyme activities. This is in contrast to the adaptation of the peroxisomal beta-oxidation system, which is induced by fatty acids and modified by hormones.  相似文献   

4.
(1) The relation between the effects of the sulfur-substituted fatty acid analogue, tetradecylthioacetic acid (TTA), dexamethasone and insulin on enzyme induction and growth rate was studied in Morris hepatoma 7800 C1 cells in culture. (2) The activities of the cynanide-insensitive palmitoyl-CoA oxidase and palmitoyl-CoA hydrolase were induced about 2-fold by 50 microM TTA after 72 h of treatment. Catalase was less induced and NADPH-cytochrome-c2 reductase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase were unaffected by the fatty acid analogue. (3) Dexamethasone (250 nM) induced the same enzymes as did TTA, but was a less efficient than 50 microM TTA. However, in combination their effects were more than additive, resulting in 4-7-fold increases. (4) Insulin (400 nM) counteracted the inductive effects of both TTA and dexamethasone on all enzymes except for lactate dehydrogenase, which was induced by the combination of all three compounds. (5) TTA inhibited the growth rate of the cells, and this effect was potentiated by dexamethasone and counteracted by insulin. (6) The enzyme inductions were similar in exponential and plateau phases of growth, indicating that these processes were independently affected by the three compounds.  相似文献   

5.
Rat hepatocytes were cultured for 72 h with or without the addition of 0.5 mM clofibric acid. The activities of individual enzymes of the peroxisomal beta-oxidation pathway (acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and 3-ketoacyl-CoA thiolase) decreased in the control culture, but markedly increased synchronously in the clofibric acid-treated culture. The levels of mRNAs coding for these enzymes and the rates of synthesis of the enzymes were also elevated in the clofibric acid-treated culture, although no proportional relationship was observed between the time-dependent changes of these parameters. The increase in mRNAs was much higher than the increase in the rate of synthesis of the enzymes. The activity of catalase, its mRNA level and the rate of its synthesis were slightly affected. The effects of clofibric acid on the peroxisomal beta-oxidation enzymes and catalase in primary cultured hepatocytes were very similar to those observed in vivo. These results, therefore, suggest that primary culture of hepatocytes should provide a useful means for investigating the mechanism of induction of peroxisomal enzymes and the mechanism of action of peroxisome proliferators.  相似文献   

6.
In the yeast Candida tropicalis, two thiolase isozymes, peroxisomal acetoacetyl-CoA thiolase and peroxisomal 3-ketoacyl-CoA thiolase, participate in the peroxisomal fatty acid beta-oxidation system. Their individual contributions have been demonstrated in cells grown on butyrate, with C. tropicalis able to grow in the absence of either one. In the present study, a lack of peroxisomal 3-ketoacyl-CoA thiolase protein resulted in increased expression (up-regulation) of acetoacetyl-CoA thiolase and other peroxisomal proteins, whereas a lack of peroxisomal acetoacetyl-CoA thiolase produced no corresponding effect. Overexpression of the acetoacetyl-CoA thiolase gene did not suppress the up-regulation or the growth retardation on butyrate in cells without peroxisomal 3-ketoacyl-CoA thiolase, even though large amounts of the overexpressed acetoacetyl-CoA thiolase were detected in most of the peroxisomes of butyrate-grown cells. These results provide important evidence of the greater contribution of 3-ketoacyl-CoA thiolase to the peroxisomal beta-oxidation system than acetoacetyl-CoA thiolase in C. tropicalis and a novel insight into the regulation of the peroxisomal beta-oxidation system.  相似文献   

7.
Sterol carrier protein X (SCPx) is a peroxisomal protein with both lipid transfer and thiolase activity. Treating with the fatty acid, lauric acid, induced SCPx mRNA levels in rat liver and in rat hepatoma H4IIE cells but enhanced protein levels of SCPx and the thiolase produced as a post-translational modification of SCPx were only seen in H4IIE cells. Further investigation revealed that the presence of insulin can mask lauric acid effects on the SCPx gene especially at the protein level. These data are in agreement with the findings that diabetes, a medical condition characterized by high levels of fatty acids in an insulin deficient environment, enhances the hepatic expression of SCPx.  相似文献   

8.
A G Bodnar  R A Rachubinski 《Gene》1990,91(2):193-199
3-Ketoacyl-coenzyme A thiolase (thiolase) catalyzes the final step of the fatty acid beta-oxidation pathway in peroxisomes. Thiolase is unique among rat liver peroxisomal enzymes in that it is synthesized as a precursor possessing a 26-amino acid (aa) N-terminal extension which is cleaved to generate the mature enzyme. To facilitate further examination of the synthesis, intracellular transport and processing of this enzyme, cDNA clones were selected from a lambda gt11 rat liver library using antiserum raised against peroxisomal thiolase. Upon sequencing several cDNA clones, it was revealed that there are at least two distinct thiolase enzymes localized to rat liver peroxisomes, one identical to the previously published rat liver peroxisomal thiolase (thiolase 1) [Hijikata et al., J. Biol. Chem. 262 (1987) 8151-8158] and a novel thiolase (thiolase 2). The THL2 cDNA possesses a single open reading frame of 1302 nucleotides (nt) encoding a protein of 434 aa (Mr 44790). The coding region of THL2 cDNA exhibits 94.6% nt sequence identity with THL1 and 95.4% identity at the level of aa sequence. Northern-blot analysis indicates that the mRNA encoding thiolase 2 is approx. 1.7 kb in size. The mRNA encoding thiolase 2 is induced approx. twofold upon treatment of rats with the peroxisome-proliferating drug, clofibrate. In contrast, the thiolase 1 mRNA is induced more than tenfold under similar conditions.  相似文献   

9.
Treatment of cultured rat-hepatocytes with 50 microM dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) for up to 5 days resulted in a progressive increase in peroxisomal beta-oxidation and carnitine acetyltransferase activity. After 5 days, the increases in activity were 2.6- and 4.8-fold for peroxisomal beta-oxidation and 11.7- and 17.1-fold for carnitine acetyltransferase over the initial activity, in DHEA- and DHEAS-treated cells, respectively. The stimulation of the activity of these enzymes by the respective agents was dose-related; it was maximum with 50 to 100 microM DHEA and 50 to 250 microM DHEAS, although DHEAS was more effective for stimulation than DHEA. Western blot analyses revealed the induction of acyl-CoA oxidase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and carnitine acetyltransferase in the treated cells. Moreover, induction of fatty acid omega-hydroxylase proteins (P-450IVAS) was also revealed. These results indicate that DHEA and DHEAS act directly on hepatocytes. The induction of hepatic peroxisomal beta-oxidation enzymes and several other enzymes in rats administered with DHEA could be accounted for, at least in part, by the direct action of DHEA and its sulfate-conjugate (DHEAS) on liver cells.  相似文献   

10.
Immunoblot analyses with antibodies against the peroxisomal beta-oxidation enzymes from rat liver showed the presence of these enzymes in rat and human liver and kidney and rat adrenal gland. The bifunctional protein could not be detected in muscle tissues or cultured muscle cells. Acyl-CoA oxidase was detected in rat heart and cultured human muscle cells. 3-Ketoacyl-CoA thiolase was also detected in human and rat heart and skeletal muscle; however, this enzyme was not detectable in skeletal muscle of Zellweger patients, in agreement with the absence of peroxisomal fatty acid oxidation.  相似文献   

11.
Long-chain alkylthioacetic acids (3-thia fatty acids) inhibit fatty acid synthesis from [1-14C]acetate in isolated hepatocytes, while fatty acid oxidation is nearly unaffected or even stimulated. Desaturation of [1-14C]stearate (delta 9-desaturase) is also unaffected. [1-14C]Dodecylthioacetic acid (a 3-thia fatty acid) is incorporated in triacylglycerol and in phospholipids more efficiently than [1-14C]palmitate in isolated hepatocytes. The metabolism of [1-14C]dodecylthioacetic acid to acid-soluble products (by omega-oxidation) is slow compared to the oxidation of [1-14C]palmitate. In hepatocytes from adapted rats (rats fed tetradecylthioacetic acid for 4 days) the rate of [1-14C]palmitate oxidation is increased and its rate of esterification is decreased. Stearate desaturation is also decreased. The rate of cyanide-insensitive peroxisomal fatty acid beta-oxidation is several-fold increased. The metabolic effects of long-chain 3-thia fatty acids are discussed and it is concluded that they behave essentially like normal fatty acids except for their slow breakdown due to the sulfur atom in the 3 position, which blocks normal beta-oxidation.  相似文献   

12.
Reuber hepatoma H-35 cells actively synthesize the urea cycle enzyme, carbamoyl-phosphate synthetase I. Treatment of H-35 cells with dexamethasone (0.14 microM), however, enhanced synthesis of the enzyme (as measured by incorporation of [35S]methionine) by 4-5-fold. Insulin (0.18 microM) completely inhibited dexamethasone-dependent stimulation of enzyme synthesis. In vitro translation and cDNA hybridization assays were employed to measure effects of dexamethasone plus or minus insulin on levels of mRNA encoding the biosynthetic precursor of carbamoyl-phosphate synthetase I (pCPS) in Reuber H-35 cells. Both measurements yielded similar results: dexamethasone increased pCPS mRNA levels by 4-5-fold and insulin suppressed this response, but only by 50%. Specific cDNA hybridization assays also demonstrated that Reuber H-35 cells, even after hormone treatments, contain only very low levels of albumin mRNA, and no detectable ornithine carbamoyl-transferase mRNA.  相似文献   

13.
Metabolic aspects of peroxisomal beta-oxidation   总被引:5,自引:0,他引:5  
In the course of the last decade peroxisomal beta-oxidation has emerged as a metabolic process indispensable to normal physiology. Peroxisomes beta-oxidize fatty acids, dicarboxylic acids, prostaglandins and various fatty acid analogues. Other compounds possessing an alkyl-group of six to eight carbon atoms (many substituted fatty acids) are initially omega-oxidized in endoplasmic reticulum. The resulting carboxyalkyl-groups are subsequently chain-shortened by beta-oxidation in peroxisomes. Peroxisomal beta-oxidation is therefore, in contrast to mitochondrial beta-oxidation, characterized by a very broad substrate-specificity. Acyl-CoA oxidases initiate the cycle of beta-oxidation of acyl-CoA esters. The next steps involve the bi(tri)functional enzyme, which possesses active sites for enoyl-CoA hydratase-, beta-hydroxyacyl-CoA dehydrogenase- and for delta 2, delta 5 enoyl-CoA isomerase activity. The beta-oxidation sequence is completed by a beta-ketoacyl-CoA thiolase. The peroxisomes also contain a 2,4-dienoyl-CoA reductase, which is required for beta-oxidation of unsaturated fatty acids. The peroxisomal beta-hydroxyacyl-CoA epimerase activity is due to the combined action of two enoyl-CoA hydratases. (For a recent review of the enzymology of beta-oxidation enzymes see Ref. 225.) The broad specificity of peroxisomal beta-oxidation is in part due to the presence of at least two acyl-CoA oxidases, one of which, the trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) oxidase, is responsible for the initial dehydrogenation of the omega-oxidized cholesterol side-chain, initially hydroxylated in mitochondria. Shortening of this side-chain results in formation of bile acids and of propionyl-CoA. In relation to its mitochondrial counterpart, peroxisomal beta-oxidation in rat liver is characterized by a high extent of induction following exposure of rats to a variety of amphipathic compounds possessing a carboxylic-, or sulphonic acid group. In rats some high fat diets cause induction of peroxisomal fatty acid beta-oxidation and of trihydroxy-5 beta-cholestanoyl-CoA oxidase. Induction involves increased rates of synthesis of the appropriate mRNA molecules. Increased half-lives of mRNA- and enzyme molecules may also be involved. Recent findings of the involvement of a member of the steroid hormone receptor superfamily during induction, suggest that induction of peroxisomal beta-oxidation represents another regulatory phenomenon controlled by nuclear receptor proteins. This will likely be an area of intense future research. Chain-shortening of fatty acids, rather than their complete beta-oxidation, is the prominent feature of peroxisomal beta-oxidation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The final steps of jasmonic acid (JA) biosynthesis are thought to involve peroxisomal beta-oxidation, but this has not been directly demonstrated. The last and key step in fatty acid beta-oxidation is catalyzed by 3-ketoacyl-CoA thiolase (KAT) (EC 2.3.1.16). A mutant of Arabidopsis thaliana ecotype Landsberg erecta, which lacks a functional KAT protein and is defective in glyoxysomal fatty acid beta-oxidation has been reported. In this study, the mutant was found to accumulate reduced level of JA in both its wounded cotyledons and leaves, while only the cotyledons accumulate 3-oxo-2-(pent-2'-enyl)-cyclopentane-1-octanoic acid (OPC-8:0). This indicates that a defect in one of the thiolase isoenzymes impairs beta-oxidation of OPC-8:0 to JA. The mutant had sufficient thiolase activity for the synthesis of JA in the unwounded but not in the wounded tissues. Activities of the enzymes in the JA pathway that catalyze the steps, which precede beta-oxidation were not altered by the mutation in a thiolase protein. Thus, reduced levels of JA in the wounded tissues of the mutant were attributed to the defect in a thiolase protein.  相似文献   

15.
In germinating oilseeds peroxisomal fatty acid beta-oxidation is responsible for the mobilization of storage lipids. This pathway also occurs in other tissues where it has a variety of additional physiological functions. The central enzymatic steps of peroxisomal beta-oxidation are performed by acyl-CoA oxidase (ACOX), the multifunctional protein (MFP) and 3-ketoacyl-CoA thiolase (thiolase). In order to investigate the function and regulation of beta-oxidation in plants it is first necessary to identify and characterize genes encoding the relevant enzymes in a single model species. Recently we and others have reported on the cloning and characterization of genes encoding four ACOXs and a thiolase from the oilseed Arabidopsis thaliana. Here we identify a gene encoding an Arabidopsis MFP (AtMFP2) that is induced transiently during germination. The pattern of AtMFP2 expression closely reflects changes in the activities of 2-trans-enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase. Similar patterns of expression have previously been reported for ACOX and thiolase genes. We conclude that genes encoding the three main proteins responsible for beta-oxidation are co-ordinately expressed during oilseed germination and may share a common mechanism of regulation.  相似文献   

16.
Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome   总被引:12,自引:0,他引:12  
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities, including an accumulation of very long-chain fatty acids. We show by immunoblotting that there is a marked deficiency in livers from patients with the Zellweger syndrome of the peroxisomal beta-oxidation enzyme proteins acyl-CoA oxidase, the bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities and 3-oxoacyl-CoA thiolase. Using anti-(acyl-CoA oxidase), increased amounts of cross-reactive material of low Mr were seen in the patients. With anti-(oxoacyl-CoA thiolase), high Mr cross-reactive material, presumably representing precursor forms of 3-oxoacyl-CoA thiolase, was detected in the patients. Catalase protein was not deficient, in accordance with the finding that catalase activity is not diminished in the patients. Thus in contrast to the situation with catalase functional peroxisomes are required for the stability and normal activity of peroxisomal beta-oxidation enzymes.  相似文献   

17.
For the analysis of the molecular mechanism of the action of peroxisome proliferators, we attempted to establish the optimal conditions for obtaining the effects of the chemicals in vitro, employing an established cell line, Reuber rat hepatoma H4IIEC3. Histochemical analyses revealed a marked increase in the number, size, and catalase content of peroxisomes in the cells cultured on a medium containing 0.5 mM ciprofibrate, a peroxisome proliferator. The activity of acyl-CoA oxidase, the initial enzyme of the peroxisomal beta-oxidation system, was increased by more than 10-fold by the same treatment. Catalase was also induced significantly, whereas the activities of glutamate dehydrogenase and lactate dehydrogenase, mitochondrial and cytosolic marker enzymes, did not change upon the treatment. Immunoblotting and RNA-blotting analyses confirmed the increases in the amount of protein and mRNA for all the three enzymes of the peroxisomal beta-oxidation system. Cell fractionation experiments gave a partial separation of peroxisomes from other organelles for the induced culture. Thus, H4IIEC3 cells offer a good in vitro model system of the induction of peroxisomes and peroxisomal beta-oxidation enzymes by peroxisome proliferators.  相似文献   

18.
The fate of fluorescently labeled pre-nsL-TP (Cy3-pre-nsL-TP) microinjected into BALB/c 3T3 fibroblasts was investigated by confocal laser scanning microscopy. The protein exhibited a distinct punctate fluorescence pattern and colocalized to a high degree with the immunofluorescence pattern for the peroxisomal enzyme acyl-CoA oxidase. Proteolytic removal of the C-terminal leucine of the putative peroxisomal targeting sequence (AKL) resulted in a diffuse cytosolic fluorescence. These results indicate that microinjected Cy3-pre-nsL-TP is targeted to peroxisomes. The association of nsL-TP with peroxisomal enzymes was investigated in cells by measuring fluorescence resonance energy transfer (FRET) between the microinjected Cy3-pre-nsL-TP and Cy5-labeled antibodies against the peroxisomal enzymes acyl-CoA oxidase, 3-ketoacyl-CoA thiolase, bifunctional enzyme, PMP70 and catalase. The technique of photobleaching digital imaging microscopy (pbDIM), used to quantitate the FRET efficiency on a pixel-by-pixel basis, revealed a specific association of nsL-TP with acyl-CoA oxidase, 3-ketoacyl-CoA thiolase and bifunctional enzyme in the peroxisomes. These observations were corroborated by subjecting a peroxisomal matrix protein fraction to affinity chromatography on Sepharose-immobilized pre-nsL-TP. Acyl-CoA oxidase was retained. These studies provide strong evidence for a role of nsL-TP in the regulation of peroxisomal fatty acid beta-oxidation, e.g. by facilitating the presentation of substrates and/or stabilization of the enzymes.  相似文献   

19.
20.
We have characterized the gene encoding human peroxisomal 3-oxoacyl-CoA thiolase, an enzyme operative in the peroxisomal beta-oxidation system. We found one version of this gene (gene symbol ACAA) in the human genome, in contrast to the situation in rat where two versions have been described. The human gene shows a high structural similarity to the rat genes. It contains 12 exons and 11 introns and spans about 11 kb. We have determined the 5' end of the human thiolase mRNA by employing primer extension analysis and we have sequenced the region upstream of the gene. The putative promoter area displays some of the characteristics typical of promoters of other peroxisomal genes, in that it contains GC elements, but lacks TATA boxes. Finally, no large DNA rearrangement involving the thiolase gene could be observed in a patient suffering from pseudo-Zellweger syndrome (peroxisomal thiolase deficiency).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号