首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When endothelial cells isolated from human umbilical veins were cultured for 6 days using 96-well microplates, the final cell density in each well was found not to be the same although the medium composition of each well was exactly the same. Cell growth in the wells located at the periphery of a microplate was low, while that in the central area of the plate was high. A possible cause for different rate of growth was proposed as the uneven concentration of oxygen in the culture medium of each well.  相似文献   

2.
Summary As sources of natural products with potential human therapeutic value, marine sponges are important subjects for cell culture studies. A critical component of any cell culture system is its growth medium. Proceeding from the hypotheses that the thawed, cryopreserved, primary cells would display detectable differential responses and that those responses could be comparatively quantified, this study has established that multiwell screening assays are useful tools for improving medium formulations in cell cultures of the marine sponge, Teichaxinella morchella. Fluorescent probe signals were correlated with known cell densities and viabilities in a 96-well format. Analysis of variance and post-test methods were applied to judge the significance of signal differences seen in a variety of medium formulations. Results from a series of experiments suggested that reducing glutamine and selenium concentrations in the standard medium would result in greater DNA, protein, and esterase activity signals. This was confirmed by the direct comparison of the standard and improved medium formulations. Significantly higher protein content and esterase activity were associated with the improved medium. DNA content was also higher, though not significantly. The result is a new medium formulation that may be more able to support cell growth and division, providing an improved cell culture system for marine sponge cell studies. The assays can be used in additional studies to further improve the in vitro conditions for marine sponge cell culture.  相似文献   

3.
In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation.  相似文献   

4.
Nowack EC  Podola B  Melkonian M 《Protist》2005,156(2):239-251
A novel system for the growth and maintenance of microalgae has been developed that allows the cultivation of a large number of strains with little manual effort. The system is based on a 96-well microtiter plate in which a membrane filter constitutes the bottom of each well. Algal strains are immobilised on the membranes and provided with culture medium through contact with layers of glass fibre located beneath the membranes in a special cultivation chamber. The configuration effectively separates culture medium from algal cells which allows the simultaneous exchange of the culture medium for 96 strains within a few minutes without the need to transfer the algae. If necessary, algal strains can be transferred using multi-channel pipettes. We demonstrate that a large variety of microalgal strains including delicate flagellates can be reliably grown in the system under axenic conditions and without cross-contamination. As an array system, the 96-well twin-layer system using immobilised algae is also amenable to high-throughput and massively parallel applications increasingly sought after in algal bio- and environmental technology.  相似文献   

5.
Analysis by ion-exchange chromatography of the enzymes from cultured tobacco cells and root or leaf tissues of the tobacco plant revealed that the cultured cells contain exclusively cationic peroxidases and the leaf tissues mainly anionic and neutral peroxidases.  相似文献   

6.
Developments in tissue engineering over the past decade have offered promising future for the repair and reconstruction of damaged tissues. To regenerate three dimensional and weight-bearing implants, advances in biomaterials and manufacturing technologies prompted cell cultivations with natural or artificial scaffolds, in which cells are allowed to proliferate, migrate, and differentiate in vitro. In this article, we develop a mathematical model for cell growth in a porous scaffold. By treating the cell-scaffold construct as a porous medium, a continuum model is set up based on basic principles of mass conservation. In addition to cell growth kinetics, we incorporate cell diffusion in the model to describe the effects of cell random walks. Computational results are compared to experimental data found in the literature. With this model, we are able to investigate cell motility, heterogeneous cell distributions, and non-uniform seeding for tissue engineering applications. Results show that random walks tend to enhance uniform cell spreads in space, which in turn increases the probabilities for cells to acquire nutrients; therefore random walks are likely to be a positive contribution to the overall cell growth on scaffolds.  相似文献   

7.
We describe a high-throughput procedure for measuring beta-galactosidase activity in bacteria. This procedure is unique because all manipulations, including bacterial growth and cell permeabilization, are performed in a 96-well format. Cells are permeabilized by chloroform/SDS treatment directly in the 96-well blocks and then transferred to 96-well microplates for standard colorimetric assay of beta-galactosidase activity as described by Miller [J. H. Miller (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY]. Absorbance data are collected with a microplate reader and analyzed using a Microsoft Excel spreadsheet. The beta-galactosidase specific activity values obtained with the high-throughput procedure are identical to those obtained by the traditional single-tube method of Miller. Thus, values obtained with this procedure may be expressed as Miller units and compared directly to Miller units reported in the literature. The 96-well format for permeabilization and assay of enzyme specific activity together with the use of 12-channel and repeater pipettors enables efficient processing of hundreds of samples in an 8-h day.  相似文献   

8.
Perfusion bioreactors improve mass transfer in cell-scaffold constructs. We developed a mathematical model to simulate nutrient flow through cellular constructs. Interactions among cell proliferation, nutrient consumption, and culture medium circulation were investigated. The model incorporated modified Contois cell-growth kinetics that includes effects of nutrient saturation and limited cell growth. Nutrient uptake was depicted through the Michaelis-Menton kinetics. To describe the culture medium convection, the fluid flow outside the cell-scaffold construct was described by the Navier-Stokes equations, while the fluid dynamics within the construct was modeled by Brinkman's equation for porous media flow. Effects of the media perfusion were examined by including time-dependant porosity and permeability changes due to cell growth. The overall cell volume was considered to consist of cells and extracellular matrices (ECM) as a whole without treating ECM separately. Numerical simulations show when cells were cultured subjected to direct perfusion, they penetrated to a greater extent into the scaffold and resulted in a more uniform spatial distribution. The cell amount was increased by perfusion and ultimately approached an asymptotic value as the perfusion rates increased in terms of the dimensionless Peclet number that accounts for the ratio of nutrient perfusion to diffusion. In addition to enhancing the nutrient delivery, perfusion simultaneously imposes flow-mediated shear stress to the engineered cells. Shear stresses were found to increase with cell growth as the scaffold void space was occupied by the cell and ECM volumes. The macro average stresses increased from 0.2 mPa to 1 mPa at a perfusion rate of 20 microm/s with the overall cell volume fraction growing from 0.4 to 0.7, which made the overall permeability value decrease from 1.35 x 10(-2)cm(2) to 5.51 x 10(-4)cm(2). Relating the simulation results with perfusion experiments in literature, the average shear stresses were below the critical value that would induce the chondrocyte necrosis.  相似文献   

9.
Summary In this report, we show how the in vitro model of mechanically injured confluent monolayers of cultured mammalian cells, consisting in denudation by gentle scraping of areas in the monolayer, can be extended to obtain patterned cell cultures without using preadded attaching matrices. This work was done with a sinusoidal endothelial liver cell line. Patterns for cell growth were drawn in confluent monolayers by cell detaching with the aid of pipette tips followed by reincubation of the culture. In one or some d, acellular patterns were closed by cell migration and proliferation. For unveiling the pattern formed by migration and cell duplication, an enzymatic digestion with trypsin-collagenase solution was applied; after some min, only the migrating and younger cells filling the previous acellular pattern remained attached to the dish, and the now cellular pattern was clearly depicted. After stopping and recovering from the enzymatic treatment, the culture was ready for starting studies such as those related to migration, proliferation, cell-cell interactions. This method allows us to create simple and complex patterns, does not require preparation of the dishes with attaching matrices, and extracellular matrices in acellular areas are absent because of the enzymatic treatment, thus, potentially having many applications in cell culture techniques.  相似文献   

10.
Organotypic tissue slice culture is established from animal or patient tissues and cultivated in an in vitro ecosystem. This technique has made countless contributions to anticancer drug development due to the vast number of advantages, such as the preservation of the cell repertoire and immune components, identification of invasive ability of tumors, toxicity determination of compounds, quick assessment of therapeutic efficacy, and high predictive performance of drug responses. Importantly, it serves as a reliable tool to stratify therapeutic responders from nonresponders and select the optimal standard-of-care treatment regimens for personalized medicine, which is expected to become a potent platform and even the gold standard for anticancer drug screening of individualization in the near future.  相似文献   

11.
The sink capacity of plant storage organs influences crop economic yield and relates to the number and volume of their cells. To obtain a better understanding of their contributions to the growth of potato microtubers produced in vitro, the number and volume of the cells in the tuber tissues were measured as tubers grew. Two potato cultivars, E-Potato 1 and Mira were employed and the results showed that cortex, perimedulla and pith tissue contributed for about 30, over 65 and up to 3% to the volume of the mature microtuber, respectively. The number of cells and cell volume increased simultaneously as the microtubers grew and the relationships could be described by a power function, Y = aW b. However, the rate of cell division was greater than the rate of cell expansion and the former contributed more than the latter to the increase in tuber size. The rate of cell division was greatest in the cortex and least in the pith, but, because the perimedulla forms the largest part of the tuber, cell division in this tissue was particularly important. The regulation of cell division to improve the production of usable microtubers is discussed.  相似文献   

12.
Maternal starvation inhibits fetal brain development during late gestation in the rat. To determine whether intrinsic or extrinsic factors might be the principal contributor to altered growth, brain cells from 20 day fetuses were cultured in a 96 well plate with MEM and 10% adult rat serum. Tissue growth was monitored by spectrophotometric measurement of the mitochondrial reduction of a chromagen 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT). After 1, 4 or 6 days incubation, MTT activity in non confluent cultures was shown to be directly related to tissue mass. When fetal brain cell cultures were incubated with 1% and 10% concentrations of adult rat serum, an 11-fold increase in MTT activity paralleled a 15-fold increase in tritiated thymidine incorporation. The impact of maternal starvation on fetal brain cell growth was examined by measuring MTT activity in fetal brain cells from fed and starved mothers. When cultures were incubated for 6 days with graded concentrations of fed adult serum (1.25–10%), the MTT response was slightly but consistently lower in cells from starved when compared with cells from fed mothers. By contrast, a marked difference in MTT activity which was paralleled by a lower DNA content became apparent when fetal rat brain cells were incubated with starved adult serum. Fetal serum and adult male serum were found to support growth equally well, while incubation of fetal brain cells with maternal sera resulted in lower MIT values than with the corresponding fetal sera. When cells were incubated with fetal sera pooled from starved mothers, MTT activity was decreased by 42 to 45%. A relative decrease in MTT activity was also apparent when cells were exposed to sera from starved mothers. Graded concentrations of starved fetal serum (2.5–10%) produced an increase in MTT activity that was consistently lower than similar concentrations of fed fetal serum, a finding suggesting a decrease in growth factors. Mixing fasted with fed serum did not correct the diminished growth, and indicated that an inhibitor might also be functioning to restrict growth. These findings therefore suggest that the principal determinants of diminished fetal brain growth during maternal starvation are not only intrinsic to the cells but are importantly related to the altered extrinsic factors in the fetal circulation.  相似文献   

13.
Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively. In liver the greatest level of MT induction was seen with short-term Cd exposures. In contrast, MT levels in the growth plate increased as the duration of Cd exposure increased. Induction of MT in growth plate chondrocyte cell cultures was observed for media Cd concentrations of ≥0.1 μM and Zn concentrations of ≥100 μM. Basal and inducible levels of MT declined through the culture period and were lowest in the terminally differentiated mineralized late stages of the culture. Alkaline phosphatase activity was also lowest in the late-stage cultures, while total cellular protein increased throughout the culture period. Treatment of chondrocytes with Zn prior to Cd exposure resulted in a protective induction of MT. Pre-treatment of chondrocytes with dexamethasone resulted in suppressed synthesis of MT upon Cd exposure and greater Cd toxicity. Both Cd and Zn resulted in significantly increased levels of MT mRNA in chondrocyte cell cultures. Dexamethasone treatment resulted in an approximate 2- to 3-fold increase in MT mRNA. This is contrary to the finding that MT protein levels were decreased by dexamethasone. The findings suggest that an increased rate of MT degradation in dexamethasone-treated and late-stage chondrocyte cultures may be associated with the terminally differentiated phenotype. J. Cell. Biochem. 68:110–120, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The characteristic feature of multidrug resistance (MDR) associated with drugs that interact with DNA topoisomerase II (topo II) is alterations in topo II activity or amount (at-MDR). We have characterized the at-MDR phenotype in human leukemic CEM cells selected for resistance to the topo II inhibitor, VM-26. Compared to drug-sensitive cells, the key findings are that at-MDR cells exhibit (i) decreased topo II activity; (ii) decreased drug sensitivity, activity and amount of nuclear matrix topo II; (iii) increased ATP requirement of topo II; (iv) a single base mutation in topo II resulting in a change of Arg to Gln at position 449, at the start of the motif B/nucleotide binding site; and (v) decreased topo II phosphorylation, suggesting decreased kinase or increased phosphatase activities. Recent results using single-stranded conformational polymorphism analysis reveals the presence of a mutation in the motif B/nucleotide binding site of the topo II gene in CEM at-MDR cells and in another leukemic cell line selected for resistance to m-AMSA. Finally, we have observed marked changes in the nuclear distribution of topo II in cells treated with anti-topo II drugs and have also found these changes to be attenuated in drug-resistant cells. We postulate that traditional inhibitors of topo II alter the equilibrium of the strand-passing reaction such that the number of enzyme-DNA covalent complexes increases. We further suggest that when the enzyme is bound to DNA it is protected from proteolysis, thus allowing more topo II molecules to be detected. We propose that MDR associated with alterations in topo II may have clinical consequences, and our current efforts involve exploiting these biochemical and molecular observations in the development of probes that may be useful to identify such drug resistant cells in the tumors of patients.  相似文献   

15.
The avascularity of epithelia may be attributed to the presence of an extractable, low-molecular-weight factor. This factor contains potent inhibitors of proteolytic enzymes, as well as a growth inhibitory activity directed against endothelial cells in vitro. It is extracted from the epithelium of bovine urinary bladders by 1 M NaCl. The extract is ultrafiltered through an Amicon XM-50 membrane, then concentrated and dialyzed into a 0.9% NaCl solution, using a UM-2 membrane. This ultrafiltrate, called the UM-2 retentate (UM-2R). contains approximately 6 μg protein/ g tissue. The UM-2R has a low content of uronic acid and is practically devoid of hydroxyproline. SDS-PAGE reveals that the UM-2R consists of six major proteins. The UM-2R contains a Trasylol-like proteinase inhibitor that expresses strong trypsin inhibitory activity. Comparisons between bladder and serum UM-2Rs and electrophoretic mobility assays indicate that this proteinase inhibitory activity is derived from the bladder epithelium and not from the serum. The UM-2R is cytotoxic to cultured endothelial cells. Cultures of other cell types (normal and neoplastic) are not affected. The bladder-derived proteinase and endothelial cell growth inhibitory activities may protect epithelia from vascular invasion.  相似文献   

16.
随着空间生命科学研究的发展,人们将细胞、组织培养技术与微重力环境相结合产生了组织工程研究的一个新领域——微重力组织工程。模拟微重力条件下细胞培养和组织构建研究表明,微重力环境有利于细胞的三维生长,形成具有功能的组织样结构,培养后的三维组织无论从形态上还是基因表达上都更接近于正常的机体组织。这种微重力对细胞的作用效应,将可能为未来组织工程和再生医学研究提供一条新途径。该文概述了近十年来国内外微重力组织工程相关研究的最新进展。  相似文献   

17.
Summary The insulin-producing cell line RINm5F, has been used in short-term experiments to evaluate insulin secretion. We sought to maintain the responsiveness of these cells to stimuli for up to 2 days. We examined the course of new insulin synthesis over this period by measuring at intervals immunoreactive insulin (IRI) in two parts: IRI in the medium (M) and IRI extracted from the cells (C). Control cells were incubated in RPMI 1640/2.8 mM glucose/10% fetal bovine serum/200 μg/ml bacitracin (to prevent insulin degradation). The addition of dibutyryl cAMP 10 mM to the experimental dishes significantly increased total (M+C) IRI at 48 hr to 37% above the insulin content of the control dishes (p<0.01). Theophylline 10 mM increased total (M+C) IRI by 24% over control (p<0.05) after 24 hrs. Glucose, glyceraldehyde, leucine, arginine, glucagon and tolbutamide, other stimulants of insulin production, had no effect. Under the experimental conditions reported here, including the use of bacitracin, IRI synthesis can be studied for up to 48 hr. Portions of this study have been published in abstract form for the 47th Annual Meeting of the American Diabetes Association, Indianapolis, Indiana, 1987. Supported in part by the American Diabetic Association, Maryland Affiliate.  相似文献   

18.
A magnetic field generator constructed of rare earth-cobalt magnets is proposed for examining the biological effects of static magnetic fields (less than 1 T) on tissue cultures. Important quantities of a magnetic field from a biological-effects viewpoint, ie, its strength and the product of strength and gradient, are analysed. A practical procedure for designing the generator with optimum parameters is given. Also, parameters are determined which will yield a sinusoidal spatial field distribution.  相似文献   

19.
Summary Growth patterns of a number of human tumor cell lines that form three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号