首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of tumor specific antigens has provided important advance in tumor immunology. It is now established that specific cytotoxic T lymphocytes (CTL) and natural killer cells infiltrate tumor tissues and are effector cells able to control tumor growth. However, such a natural antitumor immunity has limited effects in cancer patients. Failure of host defenses against tumor is consecutive to several mechanisms which are becoming targets to design new immunotherapeutic approaches. CTL are critical components of the immune response to human tumors and induction of strong CTL responses is the goal of most current vaccine strategies. Effectiveness of cytokine therapy, cancer vaccines and injection of cells improving cellular immunity have been established in tumor grafted murine models. Clinical trials are underway. To day, interest is particularly focused on cell therapy: injected cells are either "ready to use" effector cells (lymphocytes) or antigen presenting cells able to induce a protective immune reaction in vivo (dendritic cells). The challenge ahead lie in the careful optimization of the most promising strategies in clinical situation.  相似文献   

2.
Traditional therapies for cancer include surgery, chemotherapy, and radiation. Chemotherapy has widespread systemic cytotoxic effects against tumor cells but also affects normal cells. Radiation has more targeted local cytotoxicity but is limited to killing cells in the radiation field. Immunotherapy has the potential for systemic, specific killing of tumor cells. However, if the immune response is specific to a single antigen, tumor evasion can occur by down-regulation of that antigen. An immunotherapy approach that induces polyvalent immunity to autologous tumor antigens can provide a personalized vaccine with less potential for immunologic escape. A cytotoxic immunotherapy strategy creates such a tumor vaccine in situ. Immunogenic tumor cell death provides tumor antigen targets for the adaptive immune response and stimulates innate immunity. Attraction and activation of antigen presenting cells such as dendritic cells is important to process and present tumor antigens to T cells. These include cytotoxic T cells that kill tumor cells and T cells which positively and negatively regulate immunity. Tipping the balance in favor of anti-tumor immunity is an important aspect of an effective strategy. Clinically, immunotherapies may be most effective when combined with standard therapies in a complimentary way. An example is gene-mediated cytotoxic immunotherapy (GMCI) which uses an adenoviral vector, AdV-tk, to deliver a cytotoxic and immunostimulatory gene to tumor cells in vivo in combination with standard therapies creating an immunostimulatory milieu. This approach, studied extensively in animal models and early stage clinical trials, is now entering a definitive Phase 3 trial for prostate cancer.  相似文献   

3.
Experimental vaccine strategies for cancer immunotherapy   总被引:10,自引:0,他引:10  
Recently, cancer immunotherapy has emerged as a therapeutic option for the management of cancer patients. This is based on the fact that our immune system, once activated, is capable of developing specific immunity against neoplastic but not normal cells. Increasing evidence suggests that cell-mediated immunity, particularly T-cell-mediated immunity, is important for the control of tumor cells. Several experimental vaccine strategies have been developed to enhance cell-mediated immunity against tumors. Some of these tumor vaccines have generated promising results in murine tumor systems. In addition, several phase I/II clinical trials using these vaccine strategies have shown extremely encouraging results in patients. In this review, we will discuss many of these promising cancer vaccine strategies. We will pay particular attention to the strategies employing dendritic cells, the central player for tumor vaccine development.  相似文献   

4.
The human toll like receptor 9 (TLR9) detects differences between microbial and host DNA, based on unmethylated deoxycytidyl deoxyguanosine dinucleotide (CpG) motifs, leading to activation of both innate and adaptive immune mechanisms. The synthetic TLR9 agonist, CpG-ODN, can substitute for microbial DNA in these responses, and is in clinical trials as an immunomodulatory agent in diseases as diverse as infections, cancer and allergic disorders. Human TLR9 is expressed on cells of haematopoietic origin (principally plasmacytoid dendritic cells and B cells), but has also been described as being expressed on a number of other cell types. In order to clarify the expression and function of TLR9 in a range of cells of both haematopoietic and non-haematopoietic origin, we investigated the level of expression of TLR9 mRNA, and the ability of the cells to respond to CpG-ODN by upregulation of cell surface markers, cytokine production, cellular proliferation and activation of NFκB. Our data show that the cellular response to CpG-ODN depended on a threshold level of expression of TLR9. TLR9 was widely expressed amongst B cell tumours (with the exception of myeloma cell lines), but we did not find either threshold levels of expression of TLR9 or responses to CpG-ODN in several myeloma or myeloid tumour cell lines or any non-haematological tumour cell lines tested in our study. TLR9-positive cells varied significantly in their responses to CpG-ODN, and the level of TLR9 expression beyond the threshold did not correlate with the magnitude of the response to CpG-ODN. Finally, CpG-ODN induced NFκB activation and increased cellular proliferation in Hek293 cells that had been stably transfected with hTLR9, but did not affect the expression of surface markers or synthesis of IL-6, IL-10 or TNF-α. Thus both haematological and non-haematological cells expressing appropriate levels of TLR9 respond to CpG-ODN, but the nature of the TLR9-mediated response is dependent on cell type.  相似文献   

5.
DNA containing unmethylated cytidyl guanosyl (CpG) sequences, which are underrepresented in mammalian genomes but prevalent in prokaryotes, is endocytosed by cells of the innate immune system, including macrophages, monocytes and dendritic cells, and activates a pathway involving Toll-like receptor-9 (TLR9). CpG-containing oligodeoxynucleotides (CpG-ODN) are potent stimulators of innate immunity, and are currently being tested as adjuvants of antimicrobial, antiallergic, anticancer and antiprion immunotherapy. Little is known, however, about the consequences of repeated CpG-ODN administration, which is advocated for some of these applications. Here we report that daily injection of 60 microg CpG-ODN dramatically alters the morphology and functionality of mouse lymphoid organs. By day 7, lymphoid follicles were poorly defined; follicular dendritic cells (FDC) and germinal center B lymphocytes were suppressed. Accordingly, CpG-ODN treatment for > or =7 d strongly reduced primary humoral immune responses and immunoglobulin class switching. By day 20, mice developed multifocal liver necrosis and hemorrhagic ascites. All untoward effects were strictly dependent on CpG and TLR9, as neither the CpG-ODN treatment of Tlr9(-/-) mice nor the repetitive challenge of wild-type mice with nonstimulatory ODN (AT-ODN) or with the TLR3 agonist polyinosinic:cytidylic acid (polyI:C) were immunotoxic or hepatotoxic.  相似文献   

6.
刁勇  许瑞安 《微生物学报》2012,52(5):550-557
重组腺相关病毒(rAAV)已成为基因治疗领域应用最广泛的载体之一。临床前研究显示其具有很高的安全性,但人体免疫毒性仍是制约其临床疗效的关键,因此有关rAAV免疫机制的研究成为近期热点。尽管天然免疫在获得性免疫反应中发挥重要作用,但与rAAV有关的天然免疫研究过去一直未被重视。直到最近,才确认有至少3种人体细胞(树突状细胞、巨噬细胞和内皮细胞)参与了rAAV的天然免疫,作用机制为可识别载体基因组的TLR9或病毒衣壳TLR2所介导,NF-κB或干扰素调节因子(IRFs)信号通路被激活,导致各种炎性因子及I型干扰素的大量表达。自身互补型rAAV诱导的TLR9依赖性天然免疫较单链rAAV更为强烈。本文重点对近期发现的激活天然免疫反应的宿主与rAAV的相互作用、涉及的信号通路、天然免疫对获得性免疫以及转基因表达的影响进行综述。  相似文献   

7.
Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.  相似文献   

8.
Bacterial DNA with CpG motifs can efficiently stimulate the vertebrate immune system. Thus, synthetic oligodeoxynucleotides that contain such CpG motifs (CpG-ODN) are currently used in preclinical and clinical studies to develop new allergy or cancer therapies and vaccine adjuvants. Recent animal studies indicate that CpG-ODN therapies can also be used for successful treatment of infections caused by bacteria, parasites or viruses. In these experiments, innate and adaptive immune responses against pathogens were augmented by CpG-ODN and subsequently induced resistance against infectious diseases. The stimulation of dendritic cells played a central role for the therapeutic effect of CpG-ODN. However, CpG-ODN can also have negative side effects, which accelerate disease progression in some viral infections. Clinical studies with CpG-ODN will determine their potential for the therapy of infectious diseases in humans.  相似文献   

9.
Neutrophils, dendritic cells and Toxoplasma   总被引:7,自引:0,他引:7  
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.  相似文献   

10.
Dendritic cells (DCs) are bone marrow–derived immune cells that play a crucial role in inducing the adaptive immunity and supporting the innate immune response independently from T cells. In the last decade, DCs have become a hopeful instrument for cancer vaccines that aims at re-educating the immune system, leading to a potent anti-cancer immune response able to overcome the immunosuppressive tumor microenvironment (TME). Although several studies have indicated that DC-based vaccines are feasible and safe, the clinical advantages of DC vaccination as monotherapy for most of the neoplasms remain a distant target. Recently, many reports and clinical trials have widely used innovative combinatorial therapeutic strategies to normalize the immune function in the TME and synergistically enhance DC function. This review will describe the most relevant and updated evidence of the anti-cancer combinatorial approaches to boost the clinical potency of DC-based vaccines.  相似文献   

11.
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.  相似文献   

12.
Plasmacytoid dendritic cells (pDCs), also known as type I interferon (IFN)-producing cells, are specialized immune cells characterized by their extraordinary capabilities of mounting rapid and massive type I IFN response to nucleic acids derived from virus, bacteria or dead cells. PDCs selectively express endosomal Toll-like receptor (TLR) 7 and TLR9, which sense viral RNA and DNA respectively. Following type I IFN and cytokine responses, pDCs differentiate into antigen presenting cells and acquire the ability to regulate T cell-mediated adaptive immunity. The functions of pDCs have been implicated not only in antiviral innate immunity but also in immune tolerance, inflammation and tumor microenvironments. In this review, we will focus on TLR7/9 signaling and their regulation by pDC-specific receptors.  相似文献   

13.
Despite their well-documented immunogenicity, malignant melanomas belong to the most aggressive tumor types. A potential explanation for this is the suboptimal activation of tumor infiltrating T cells. In order to boost immune responses against tumors, a variety of treatment modalities have been tested in animal models and in clinical setting. Antigen-nonspecific approaches (e.g., IFN-alpha and IL-2), as well as active specific immunotherapeutical modalities based on the use of autologous or allogeneic tumor cell-save been investigated in clinical trials of melanoma. The identification of melanoma-associated antigens has opened new avenues in antigen-specific immunotherapy. A promising alternative for the delivery of different forms of melanoma antigens is the application of dendritic cells, the most potent antigen presenting cells capable of eliciting efficient T-cell response. Beside active immunotherapy, immune response against melanoma antigens could be increased through the adoptive transfer of tumor infiltrating lymphocytes or antigen specific T-cell clones. The most important conclusion that can be drawn from the results of published immunotherapy studies is that these modalities are able to induce durable complete tumor regressions,mostly with reasonable toxicity; however, generally only in a minority of patients. This points to the importance of appropriate patient selection, with regard to the expression of the targeted antigens and HLA molecules, as well as to the general immunocompetence of the patients. A crucial and still unsolved question is monitoring immune activation during treatment, although there are promising new tools that could prove useful in this respect. The presence of tumor-reactive CTL in the circulation or in the tumors does not guarantee an efficient immune response. It is important to assess if these T cells are in an activated and functional state. Finally, in several single target antigen-based clinical studies a therapy-induced immunoselection of antigen-negative clones, leading to disease progression, was observed. This could be overcome with the use of antigen cocktails or whole tumor approaches. A better understanding of the mechanisms of action of immunotherapeutical modalities may enhance the success rate of these strategies.  相似文献   

14.
The field of tumor immunology has made great progress in understanding tumor immune interactions. As a consequence a number of immuno-therapeutic approaches have been successfully introduced into the clinic and a large number of promising therapeutic strategies are investigated in ongoing clinical trials. Evaluation of anti-tumor immunity in such trials as well as in animal models has shown that tumor escape from immune recognition and tumor-mediated suppression of anti-tumor immunity can pose a significant obstacle to successful cancer therapy. Here, we review mechanisms of tumor immune escape and immune-subversion with a focus on the research interests in our laboratory: loss of MHC class I on tumor cells, increased oxidative stress, recruitment of myeloid-derived suppressor cells, and regulatory T cells.  相似文献   

15.
16.
恒定自然杀伤T细胞(iNKT)是T淋巴细胞的一个独特亚群,兼具自然杀伤(NK)细胞和T细胞特征,同时表达T细胞受体(TCR)和NK细胞表面标志。iNKT细胞被激活后,通过分泌细胞因子,活化其它免疫细胞参与先天性免疫和获得性免疫,在抗肿瘤免疫过程中发挥调节作用。在多种癌症患者体内,发现外周血中iNKT细胞的数量降低、功能减弱,进而导致临床治疗效果不佳。近年来,基础研究和早期临床试验结果表明,注射抗原递呈细胞或/和体外培养并活化的iNKT细胞,抗肿瘤免疫治疗效果显著。本文就iNKT细胞的分类及生物学特性,在肿瘤免疫治疗中的作用与其机制,以及其临床应用等进行综述。  相似文献   

17.
肿瘤细胞免疫疗法近年来的发展颇为瞩目,嵌合抗原受体T(CAR-T)的临床研究显示其对血液系统肿瘤具有良好的治疗效果。自然杀伤细胞(NK)是人体固有免疫的一类重要细胞,其不同于T细胞的非特异性识靶及杀伤机制吸引科学家将工程CAR-T技术沿袭并用于嵌合抗原受体NK(CAR-NK)改造。目前,无论在体外细胞模型还是小鼠动物模型中,CAR-?NK均显示出良好的肿瘤杀伤效果。最新的临床研究显示,CAR-NK细胞对血液系统肿瘤有良好的治疗效果,但治疗实体瘤效果尚待验证。与CAR-T细胞疗法一样,CAR-NK也有问题亟需解决,但是NK细胞作为效应细胞,其自身优点预示CAR-NK细胞在实体瘤治疗方面拥有良好的发展前景。  相似文献   

18.
Adoptive T cell therapy recently achieved impressive efficacy in early-phase clinical trials; this significantly raises the profile of immunotherapy in the fight against cancer. A broad variety of tumour cells can specifically be targeted by patients' T cells, which are redirected in an antibody-defined, major histocompatibility complex-unrestricted fashion by endowing them with a chimeric antigen receptor (CAR). Despite promising results for some haematologic malignancies, the stroma of large, established tumours, the broad plethora of infiltrating repressor cells, and cancer cell variants that had lost the target antigen limit their therapeutic efficacy in the long term. This article reviews a newly described strategy for overcoming some of these shortcomings by engineering CAR T cells with inducible or constitutive release of IL-12. Once redirected, these T cells are activated, and released IL-12 accumulates in the tumour lesion where it promotes tumour destruction by at least two mechanisms: (1) induction of an innate immune cell response towards those cancer cells which are invisible to redirected T cells and (2) triggering programmatic changes in immune-suppressive cells. Given the enormous complexity of both tumour progression and immune attack, the upcoming strategies using CAR-redirected T cells for local delivery of immune-modulating payloads exhibited remarkable efficacy in pre-clinical models, suggesting their evaluation in clinical trials.  相似文献   

19.
Living in the danger zone: innate immunity to Salmonella   总被引:3,自引:0,他引:3  
Phagocytic cells, including macrophages, neutrophils and dendritic cells, are critical components of the innate immune response to bacterial pathogens such as Salmonella typhimurium. These cells can have several roles during the early stage of an infection including controlling bacterial replication and producing cytokines and chemokines that activate and recruit additional cells. Macrophages, neutrophils and dendritic cells increase in number early after oral Salmonella infection and produce cytokines important in host survival such as tumor necrosis factor alpha (TNF-alpha). All three phagocytic cell types also harbor bacteria during infection. Natural killer cells, natural killer T cells and T cell receptor alpha beta T cells also respond rapidly to infection and are early sources of interferon-gamma during infection with Salmonella. Studies using infection models with Salmonella are providing a picture of the innate response to bacteria and insight into the role of defined cell types and cytokines important in the transition from innate to adaptive immunity.  相似文献   

20.
Over the last few years, several newly developed immune-based cancer therapies have been shown to induce clinical responses in significant numbers of patients. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. If there were laboratory parameters that could define patients with improved disease outcomes after immunomodulation, product development would accelerate, optimization of existing immune-based treatments would be facilitated and patient selection for specific interventions might be optimized. Although there are no validated cancer immunologic biomarkers that are predictive of clinical response currently in widespread use, there is much published literature that has informed investigators as to which markers may be the most promising. Population-based studies of endogenous tumor immune infiltrates and gene expression analyses have identified specific cell populations and phenotypes of immune cells that are most likely to mediate anti-tumor immunity. Further, clinical trials of cancer vaccines and other cancer directed immunotherapy have identified candidate immunologic biomarkers that are statistically associated with beneficial clinical outcomes after immune-based cancer therapies. Biomarkers that measure the magnitude of the Type I immune response generated with immune therapy, epitope spreading, and autoimmunity are readily detected in the peripheral blood and, in clinical trials of cancer immunotherapy, have been associated with response to treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号