首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Meals have long been considered relevant units of feeding behavior. Large data sets of feeding behavior of cattle, pigs, chickens, ducks, turkeys, dolphins, and rats were analyzed with the aims of 1) describing the temporal structure of feeding behavior and 2) developing appropriate methods for estimating meal criteria. Longer (between-meal) intervals were never distributed as the negative exponential assumed by traditional methods, such as log-survivorship analysis, but as a skewed Gaussian, which can be (almost) normalized by log-transformation of interval lengths. Log-transformation can also normalize frequency distributions of within-meal intervals. Meal criteria, i.e., the longest interval considered to occur within meals, can be estimated after fitting models consisting of Gaussian functions alone or of one Weibull and one or more Gaussian functions to the distribution of log-transformed interval lengths. Nonuniform data sets may require disaggregation before this can be achieved. Observations from all species were in conflict with assumptions of random behavior that underlie traditional methods for criteria estimation. Instead, the observed structure of feeding behavior is consistent with 1) a decrease in satiety associated with an increase in the probability of animals starting a meal with time since the last meal and 2) an increase in satiation associated with an increase in the probability of animals ending a meal with the amount of food already consumed. The novel methodology proposed here will avoid biased conclusions from analyses of feeding behavior associated with previous methods and, as demonstrated, can be applied across a range of species to address questions relevant to the control of food intake.  相似文献   

3.
Significant correlations (P<0.05) between meals and preceding intervals were shown more often by Japanese quail when fed on diluted mash (40% cellulose) than with undiluted mash or pellets. They showed significant correlations between meals and succeeding intervals with about the same frequency on all three foods. Most of the correlation coefficients were low, but experiments in which interval length and meal size were manipulated artificially confirmed that close relationships between meals and intervals can occur, and appear to verify the existence of short-term hunger and satiety mechanisms. Possible explanations for the low correlation coefficients shown by several bird species are discussed, and it is concluded that meal-eating is controlled by a very flexible system. There is no evidence that the timing of meals depends on fixed set points, and it is suggested instead that degrees of hunger and satiety may determine the probabilities of a meal starting or stopping, such a system being associated with emptying and filling of parts of the digestive tract.  相似文献   

4.
Ghrelin is an orexigenic hormone that is implicated in meal initiation, in part because circulating levels rise before meals. Because previous human studies have examined subjects fed on known schedules, the observed preprandial ghrelin increases could have been a secondary consequence of meal anticipation. A causal role for ghrelin in meal initiation would be better supported if preprandial increases occurred before spontaneously initiated meals not prompted by external cues. We measured plasma ghrelin levels among human subjects initiating meals voluntarily without cues related to time or food. Samples were drawn every 5 min between a scheduled lunch and a freely requested dinner, and hunger scores were obtained using visual analog scales. Insulin, glucose, fatty acids, leptin, and triglycerides were also measured. Ghrelin levels decreased shortly after the first meal in all subjects. A subsequent preprandial increase occurred over a wide range of intermeal intervals (IMI; 320-425 min) in all but one subject. Hunger scores and ghrelin levels showed similar temporal profiles and similar relative differences in magnitude between lunch and dinner. One subject displayed no preprandial ghrelin increase and was also the only individual whose insulin levels did not return to baseline between meals. This finding, along with a correlation between area-under-the-curve values of ghrelin and insulin, suggests a role for insulin in ghrelin regulation. The preprandial increase of ghrelin levels that we observed among humans initiating meals voluntarily, without time- or food-related cues, and the overlap between these levels and hunger scores are consistent with a role for ghrelin in meal initiation.  相似文献   

5.
Analysis of the feeding behavior of animals using such a high temporal resolution that meals can be defined may improve our understanding of the mechanisms regulating feeding. Meals can be distinguished in an ethologically meaningful manner by using the ‘meal criterion’, the shortest non‐feeding interval between feeding bouts recognized as meals. However, such a criterion has only been determined for a few insect species. Applying a recent method developed for assessing meal criteria for vertebrates, we determined the meal criterion for Hylobius abietis (L.) (Coleoptera: Curculionidae) based on data from video recordings of single individuals feeding on seedlings of Norway spruce, Picea abies (L.) Karst. (Pinaceae). The pine weevil is an economically important pest insect, because it feeds on the stem bark of planted conifer seedlings. Weevils had 4–5 meals per day. Each meal lasted about 24 min during which about 13 mm2 of bark per meal were removed. Females had longer total meal durations and longer non‐feeding intervals within meals than males. Girdling seedlings did not affect the weevils' feeding properties. The size of meals was significantly correlated with the duration of non‐feeding intervals before and after them. This study is one of few describing the feeding behavior of an insect at a temporal resolution that allows individual meals to be distinguished. With more meal‐related data from insects available, differences in meal properties may be interpreted based on phylogeny, ecology, and physiology. Our results may also assist in the setup and interpretation of studies of plant‐insect interactions, and facilitate the evaluation and development of methods to protect plants against herbivores.  相似文献   

6.
Four Holstein heifers (264 ± 12 kg initial BW) were used in a 4 × 4 Latin square design with 21-day experimental periods to determine the effect of increasing levels of sodium bicarbonate (BICARB) (0%, 1.25%, 2.5% and 5%, of concentrate dry matter (DM) basis) on chewing and feed intake behavior when fed high-concentrate diets. Concentrate (13.41% CP, 13.35% NDF) and barley straw were fed once a day at 0830 h ad libitum. Feed bunks placed on scales and video recording were used to measure 24-h feed intake and chewing behavior, respectively. The patterns of feeding behavior (feed intake, meal size and length) and chewing behavior (eating, ruminating and total chewing) were studied by dividing the day into 12 intervals of 2-h each, beginning at feeding (interval 1 through 12). Number of meals per day and eating rate decreased linearly with increasing buffer level, but meal length increased linearly. No treatment effects were observed in sum of daily meal lengths or average meal size. The treatment × interval interaction was significant on meal size, length and feed intake. The size and length of those meals occurring during the 4 h post-feeding increased linearly. However, meal size tended to decrease in the evening between 8 and 12 h, whereas feed intake decreased linearly from 6 to 10 h and from 12 to 14 h post-feeding. Buffer concentration did not affect the percentage of time spent ruminating, eating or drinking per day but the buffer level × interval interaction was significant. Time spent eating expressed as min per kg of DM or organic matter (OM) intake increased linearly with buffer levels. Proportion of time spent eating increased linearly during the intervals between 0 and 4 h post-feeding. Time spent ruminating decreased linearly during the 2 h post-feeding, and also in the evening from 12 to 14 h, and at night from 18 to 22 h post-feeding, but the effect was quadratic between 8 and 10 h when intermediate buffer levels showed the greatest ruminating time. Time spent drinking decreased linearly from 6 to 8 h but increased during the 2 h following feeding and from 10 to 12 h post-feeding. Daily eating rate and meal frequency decreased linearly as the buffer level increased, but average meal size and daily chewing times were not affected. However, significant time of the day × buffer level interactions were observed for feed intake, meal size and length and chewing behavior.  相似文献   

7.
Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT), a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6–7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation) was performed 1–2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir) 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92–86% suppression of food intake at 2–24 h post-surgery compared with control group (no surgery). RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON), paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W), lateral periaqueduct gray (PAG), lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS). RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration) and satiety (meal interval) and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition. RKT improves food consumption post-surgically that may involve modulation of pain pathway.  相似文献   

8.
K. C. HAMER  D. R. THOMPSON 《Ibis》1997,139(1):31-39
The pattern of chick feeding in the Fulmar Fulmarus glacialis at St Kilda, Scotland, was examined by repeated weighing of chicks throughout 14 consecutive days during the first half of the chick-rearing period in 1994. After correcting for metabolic weight losses, the sizes of positive mass increments between weighings were used to assess meal sizes and feeding frequency for each chick. Individual meals fed to chicks averaged 80.8 g (s.d. ± 21.0 g), or approximately 10% of adult mass. Each chick received 0 to 4 meals per day, with an average of 1.9 meals per chick per day, giving an average interval of around 25 h between meals delivered by each parent. The distribution of time intervals between feeds for each chick (whether single or double meals) followed a negative exponential function with a maximum value of 80 h. These results are not compatible with the idea that the purpose of large fat deposits in procellariiform chicks is to guarantee survival over long intervals between feeds. Over 14 days, the chicks' mean daily food requirements for zero-growth increased from 98 g to 160 g. This corresponded with an increase in feeding frequency but not meal size. Chicks with lower scores for body condition after feeding by both parents received more meals during the subsequent 16 h and had shorter intervals to the next feed, indicating that adults regulated feeding frequency in accordance with chick condition at the previous feed. This does not agree with the hypothesis that lipid accumulation by nestling Procellariiformes is a response to stochastic variation in food delivery associated with an absence of regulation. In view of the diversity of growth and feeding patterns present among the Procellariiformes, it is possible that lipid accumulation in this group does not have a unitary explanation.  相似文献   

9.
To investigate the acute effects of lactate on spontaneous feeding, we infused lactate in the hepatic portal vein (0.5, 1.0, and 1.5 mmol lactate/meal) or in the vena cava (1.0 and 1.5 mmol lactate/meal) of ad libitum-fed rats during their first spontaneous nocturnal meal. Infusions (5 min, 0.1 ml/min) were remotely controlled, and a computerized feeding system recorded meal patterns. In separate crossover tests, meal size decreased independent of the infusion route after 1.0 and 1.5 mmol but not after 0.5 mmol lactate. The subsequent intermeal interval (IMI) tended to decrease only after vena cava infusion of 1.0 mmol lactate. The size of the second nocturnal meal increased after the 1.0 mmol lactate infusion. Hepatic portal infusion of 1.5 mmol lactate increased the satiety ratio [subsequent IMI (min)/meal size (g)] by 175%, which was higher than the insignificant 43% increase after vena cava infusion. Hepatic portal infusion of 1.5 mmol lactate also increased systemic plasma lactate but not glucose concentration at 1 min after the end of infusion. The results are consistent with the idea that meal-induced increases in circulating lactate play a role in the control of meal size (satiation). Moreover, the results suggest that lactate also contributes to postprandial satiety and that the liver is involved in this effect. The exact mechanisms of lactate's inhibitory effects on feeding and the site(s) where lactate acts to terminate meals remain to be identified.  相似文献   

10.
Removal of drinking water at the start of the dark period reduced food intake in freely feeding rats within 45 min. Both first and later meals were smaller during 7.5 h of water deprivation, but meal frequency did not change. Ingestion of a normal-sized meal (3 g) rapidly increased plasma tonicity when drinking water was withheld, but intravenous infusions of hypertonic NaCl causing similar increases in plasma tonicity did not reduce feeding. Feeding during 6 h of water deprivation was restored by slowly infusing the volume of water normally drunk into the stomach, jejunum, or cecum, but not in the vena cava or hepatic portal vein. The infusions did not alter water or electrolyte excretion or affect food intake in rats allowed to drink. We conclude that the inhibition of feeding seen during water deprivation is mediated by a sensor that is located in the gastrointestinal tract or perhaps in the mesenteric veins draining the gut, but not the hepatic portal vein or the liver. In the absence of drinking water, signals from this sensor provoke the early termination of a meal.  相似文献   

11.
1. We studied feeding frequency in free-ranging grey seals using stomach temperature telemetry to test if previously reported sex differences in the diving, movement and diet were reflected in the temporal pattern of foraging success. 2. Data were retrieved from 21 of 32 grey seals from 1999 to 2001, totalling 343 days and 555 feeding events, with individual record length varying from 2 to 40 days (mean: 16.33 +/- 2.67 days/seal). 3. Seals fed on 57.8 +/- 6.46% of days sampled and had an average of 1.7 +/- 0.26 meals per day, but individual variability was apparent in the temporal distribution of feeding as evidenced by high coefficients of variation (coefficient of variation = 69.0%). 4. Bout analysis of non-feeding intervals of six grey seals suggests that feeding intervals of individuals were varied and probably reflect differences in prey availability. Grey seals tended to have many single feeding events with long periods separating each event, as would be expected for a large carnivore with a batch-reactor digestive system. 5. We found significant sex differences in the temporal distribution of feeding. The number of feeding events per day was greater in males (2.2 +/- 0.4 vs. 1.0 +/- 0.2), as was time associated with feeding per day (56.6 +/- 5.8 min vs. 43.9 +/- 9.4 min). 6. The number of feeding events varied with time of day with the least number occurring during dawn. Feeding event size differed significantly by time of day, with greater meal sizes during the dawn and the smallest meals during the night. 7. The length of time between meals increased with the size of the previous meal, and was significantly less in males (541.4 +/- 63.5 min) than in females (1092.6 +/- 169.9 min). 8. These results provide new insight into the basis of sex differences in diving and diet in this large size-dimorphic marine predator.  相似文献   

12.
This paper summarises knowledge about temporal control of ad libitum feeding in poultry, from minute to minute, hour to hour and day to day, and about how it relates to aspects of gastrointestinal function. Evidence is presented of only loose control over initiation and termination of spontaneous meals, and it is proposed that degrees of hunger and satiety determine probabilities of feeding starting and stopping. Voluntary regulation of food intake can be considered in terms of adjustments in mean meal size, meal frequency or both. Short-term variation is associated more with meal frequency and longer-term changes more with meal size. Short-term adjustments appear to depend more on alimentary control and longer-term adjustments more on metabolic control (not considered here). Long-term changes affecting meal size are associated with changes in capacity of parts of the alimentary tract. Food can accumulate in the crop and gizzard, and meal initiation and termination are associated with varying degrees of emptying and filling of these diverticula during most of the day. Later in the day there is usually a conditioned change to cumulative filling of the crop (and gizzard) with food that is digested overnight. Possible roles of osmo-/chemoreceptors and gut peptides are discussed.  相似文献   

13.
Circadian rhythms and patterns of feeding and drinking behavior of 8 male and 8 female Long-Evans rats were followed from 3 months of age (mo) to 21 mo at 3 month intervals. Meal number, draft number and feeding events/min/meal of female rats were greater than those of male rats of the same age, while intermeal intervals, interdraft intervals and licking events/min/draft of male rats were greater than those of female rats. Sex differences of meal number, intermeal intervals and feeding events/min/meal as a group disappeared by 21 mo. Light/dark differences of meal number of both sexes, intermeal intervals of females and licking events/min/draft of males as a group also disappeared by 21 mo and difference of feeding events/min/meal disappeared by 15 and 18 mo in males and females, respectively. Occurrence of age-related change varied from 6 to 21 mo depending upon the parameter of the behavior and period (light or dark). Meal number and feeding events/min/meal showed the most clear-cut age-related changes and the decline occurred earlier and was more remarkable in males than in females. The age-related decline of patterns and the power spectrum of drinking behavior was less prominent than that of feeding behavior. These results indicate that feeding behavior is more affected by the aging process than is the drinking behavior of rats, and that male rats show more prominent aging changes than females.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Rats were equipped with chronic gastric cannulas, and the effects of intraperitoneal injections of pancreatic glucagon on sham feeding, with cannulas open, and real feeding, with cannulas closed, were compared. Glucagon (100–2,500 μg/kg) suppressed cumulative food intake during real feeding tests 9–33%, but had no effect during sham feeding. Despite their increased food intakes, sham feeding rats took discrete meals terminated by the behavioral satiety sequence. In addition to not affecting total intake, glucagon failed to affect meal size, latency to rest, or intermeal interval during sham feeding. To investigate the possiblity that glucagon did not inhibit sham feeding because it did not elicit hyperglycemia, we measured hepatic vein blood glucose after glucagon injections in sham feeding rats: glucagon elicited marked hyperglycemia during sham feeding. Therefore, the absence of glucagon's satiety effect in sham feeding is not due to the lack of hepatic glycogenolysis and hyperglycemia. These results suggest that some mechanism other than hyperglycemia which normally accompanies food ingestion is necessary for glucagon to have a satiety effect.  相似文献   

15.
Feeding patterns were recorded and analysed for adult female weevils, Exopthalmus jekelianus (White) (Coleoptera: Curculionidae), feeding on Central American mahogany, Cedrela odorata L., in the field in Costa Rica. The study forms part of an investigation into the relationship between feeding patterns and the fine-scale variation in leaf chemistry occurring within the host plant. The weevils’ feeding patterns were the simplest in temporal structure of any reported to date for an insect herbivore. Weevils spent an average of only 3% of their time feeding during the 10-h observation periods. Meals lasted an average of 2.8 min and occurred at a mean intermeal interval of 84 min. The feeding patterns gave the appearance of a short-term rhythm underlying the onset of feeding (as has been found in locusts and caterpillars), although there were insufficient meals taken by individuals over the 10-h period to test this suggestion. Meals were notable in apparently lacking intrameal pauses and also commencing without preliminary sampling behaviours, such as palpating or biting. Whether the combination of short, infrequent meals, ingested without pauses and not preceded by sampling behaviour, represents an adaptation reducing apparency to natural enemies, or else simply reflects low nutritional needs, is discussed. Correlations between meal durations and following and preceding intermeal intervals suggested that variation in intermeal intervals stemmed largely from variation in meal duration, not vice versa, with variation in meal duration resulting from an external influence such as leaf nutritional and/or allelo-chemistry. The latter suggestion is currently being tested.  相似文献   

16.
There are various forms of the satiety gut-brain peptide cholecystokinin (CCK), a short, widely utilized form or CCK-8, and a long, putatively more effective form or CCK-33. The issue of which of these forms is a more effective satiety peptide is not resolved. Here, we compared the satiety responses, including the sizes of the first three meals (MS) and intermeal intervals (IMI) as well as their calculated satiety ratios (SR), evoked by both peptides. CCK-8 and 33 (1, 3 and 5 nmol/kg, i.p) reduced the size of the first meal similarly, only CCK-33 prolonged the first IMI and increased SR and both peptides failed to affect second and third MS and IMI. As such, CCK-33 is a more effective satiety peptide than CCK-8. The current results confirm previous findings which showed that both peptides reduce food intake by inhibiting meal size, whereas only CCK-33 reduces food intake by prolonging the intermeal interval.  相似文献   

17.
Twelve healthy adults were studied, singly or in groups of up to four, in an Isolation Unit before (control days) and for 3 days after a simulated time-zone transition to the east across 8 time zones (the clock being changed from 15:00 to 23:00 h). Subjects were free to choose how to pass their waking hours (though naps were forbidden), and to eat what and when they wanted. A wide selection of food was provided, though the subjects had to prepare it. Subjects completed food intake questionnaire on waking and at 3 h intervals during the waking day. This questionnaire assessed the reasons for choosing not to eat a meal or, if a meal was eaten, the reasons for doing so, the type of meal chosen and the reasons for this choice, and subjective responses to the meal (hunger before, enjoyment during, and satiety afterwards). Subjects also recorded the incidence and degree of indigestion and jet lag at 3 h intervals after the time-zone transition. Following the time-zone transition, the subjects experienced significant amounts of jet lag and recorded a significant increase in the incidence of indigestion. They also showed significant changes in their pattern of food intake, but, whereas the patterns of food intake were no longer significantly different from control days by the third post-shift day, the symptoms of jet lag and indigestion were still present then. The distribution of daytime meals was significantly affected on the first post-shift day, with a redistribution of the times that the main, hot meals were eaten; these times indicated some influence of an unadjusted body clock. On this day also, the reasons for determining food intake continued to be dominated by hunger and appetite (hunger even increasing in the frequency with which it was cited), and the reason for not eating a meal, by a lack of hunger. On both control and post-shift days, there was a marked effect of meal type upon the responses to food intake, with cold food being rated least and large hot meals most when appetite before the meal, enjoyment during it, and satiety afterward were considered. However, evidence suggested that the degree to which larger hot meals were preferred to cold meals was significantly less marked after the time-zone transition. On control days, sleep was unbroken; whereas, after the time-zone transition, all subjects woke on at least one of the 3 nights studied. During the first post-shift night, about half of the subjects ate a meal, the reason given being that they were “hungry.” On those occasions when subjects woke but did not eat a meal, the reason cited was because they “could not be bothered” as frequently as because they were “not hungry.”. A simulated time-zone transition is associated with significant changes to the incidence of indigestion, pattern of food intake, and subjective responses to food. However, these changes are generally transient and are only weakly linked to the sensation of jet lag.  相似文献   

18.
A consequence of increasing litter size in sheep is that a portion of the lambs have to be reared artificially. Detailed information about the pattern of milk consumption of artificially reared lambs would help improve their management. The purpose of this study is to describe the individual and group feeding behaviour of 94 Romane artificially reared lambs from 5 to 28 days of age using an electronic automatic lamb feeder. Animals were located in four pens of 8 to 15 lambs of similar age with one teat per pen. They were fed ad libitum. In our experimental situation (group rearing, continuous lightning) on average a lamb made 1.4±0.7 visits to the teat per meal and 9.5±3 meals per day. Mean meal duration was 247±158 s and the mean daily time spent feeding was 38±25 min. The mean quantity of milk intake was 176±132 ml per meal and 1.68±0.8 l per day. With age, the number of daily meals and their duration decreased while the quantity of milk consumed per meal and per day increased. Females tended to make more visits to the teat per meal and perform more meals per day but their milk consumption per meal was lower. The feed conversion ratio was 1.36±0.2. Synchrony in feeding (group meal) was estimated as the percentage of lambs that wanted to access the teat within the same short period (relative group meal size). On average 65% of lambs in the pen wanted to access the teat within the same period, but for 35% of group meals the relative group meal size was >90%. There was no consistency in the order in which lambs accessed the teat during a group meal. Our evaluation suggested that electronic automatic lamb feeders are tools that can provide, on a large scale, data describing the feeding behaviour of artificially reared lambs. It is then possible to study factors influencing these traits in order to improve the outcome of artificially reared lambs.  相似文献   

19.
This study evaluated how water temperature (26, 28, and 30°C), number of meals per day (one or two meals), and protein percent in diet (20, 25 and 30%) impact growth performance, biometric indices, and feeding behavior of Nile tilapia, Oreochromis niloticus. Fish were randomly allocated into 18 equal replicate groups. Higher final body weight was observed in fish reared at 30°C and fed one meal per day containing 30% crude protein. Better weight gain, weight gain %, feed conversion ratio, specific growth rate, and condition factor were recorded in fish reared at 26°C and fed one meal per day containing 30% protein. The best length weight relationship was obtained in fish reared at 26°C and fed one meal per day containing 30% crude protein. Shorter feeding duration and duration of appetite inhibition latency were recorded in fish reared at 30°C, fed one meal per day, and given a diet containing 30% protein. The highest proactivity was recorded in fish reared at 30°C, received one meal per day, and with 25% crude protein in their diet. Conclusively, rearing Nile tilapia at 26–30°C with a lower feeding frequency (one meal/day) and a 30% crude protein diet achieved better performance and feeding behavior.  相似文献   

20.
Varying the time since the last meal is one means of manipulating feeding motivation. In order to use this method effectively it is necessary to know whether and the extent to which effects of one pre-meal interval are carried over to affect the behaviour during the following meals. Pre-meal interval (PMI) is defined here for practical purposes, for short meals, as the time between the start of two successive meals. The possibility that one unrestricted meal might buffer the effects of an 8h as opposed to a 4h PMI on aspects of feeding behaviour was studied with eight Scottish Blackface sheep. They were fed on a regime in which they were given access to food until they finished their meal and lay down (this always occurred within 60min) at which time the remaining food was withdrawn. Feeding behaviour was recorded during the meal after these 4 and 8h intervals, as well as during the following meal 4h later.At a meal after a PMI of 8h, compared to 4h, sheep had a higher intake per meal (mean+/-S.T.D. for 8 and 4h PMI, respectively: 604.4+/-78.8 and 430.1+/-100.9g; P<0.001), a longer meal duration (27.1+/-7.5 and 21.8+/-8.1min; P<0.001), and a tendency for a higher intake rate (23.8+/-6.2 and 21.9+/-8.2g/min; P=0.11). During the following meal 4h later these differences were smaller, but intake per meal still tended to be higher (430.8+/-81.5 and 338.5+/-45.6g; P<0.06) for sheep who had previously had the 8h PMI. Meal duration (21.9+/-7.2 and 20.6+/-7.08min; P=0.28) and intake rate (21.2+/-6.1 and 18.7+/-7.2g/min; P=0.13) were no longer different.A single meal after the different PMIs reduced differences in all three aspects of feeding behaviour observed during the subsequent meal, 4h later, but differences in intake per meal were still apparent. It is suggested that an additional meal may overcome the carry-over effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号