首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brown algae exhibit three patterns of sexual reproduction: isogamy, anisogamy, and oogamy. Unicellular swarmers including gametes and zoospores bear two heterogenous flagella, an anterior flagellum with mastigonemes (fine tripartite hairs) and a posterior one. In seawater, these flagellates usually receive physico-chemical signals for finding partners and good habitats. It is well known that brown algal swarmers change their swimming direction depending on blue light (phototaxis), and male gametes do so, based on the sex pheromones from female gametes (chemotaxis). In recent years, the comparative analysis of chemotaxis in isogamy, anisogamy, and oogamy has been conducted. In this paper, we focused on the phototaxis and chemotaxis of brown algal gametes comparing the current knowledge with our recent studies.  相似文献   

2.
Hisayoshi Nozaki 《Biologia》2008,63(6):772-777
Eukaryotic sex was initially isogametic and it is assumed that anisogamy/oogamy evolved independently in many lineages including animals, land plants and volvocine green algae. The exact evolutionary mechanisms that were responsible for the evolution of oogamy from isogamy were poorly understood until Nozaki et al. (2006) introduced the use of molecular-genetic data in elucidating the evolutionary origin of oogamy from isogamy in the colonial volvocacean Pleodorina starrii. In the close relative Chlamydomonas reinhardtii, sexual reproduction is isogametic with mating-types plus and minus. Mating type minus represents a “dominant sex” because the MID (“minus-dominance”) gene of C. reinhardtii is both necessary and sufficient to cause the cells to differentiate as isogametes of the minus mating type. No sex-specific genes had been identified in the volvocine green algae until Nozaki et al. (2006a) successfully cloned the MID gene of P. starrii. This “OTOKOGI” (PlestMID) gene is present only in the male genome, and encodes a protein localized abundantly in the nuclei of mature sperm. Thus, P. starrii maleness evolved from the dominant sex (mating type minus) of its isogamous ancestor. This breakthrough provides an opportunity to address various extremely interesting questions regarding the evolution of oogamy and the male-female dichotomy. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

3.
Gene array analysis of osteoblast differentiation.   总被引:4,自引:0,他引:4  
  相似文献   

4.
Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete, irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1–2 h after fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization, mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis in brown algae.  相似文献   

5.
6.
7.
8.
Expression of three clones (6-1E, 7-3G and 9-5C) selected from a chronic lymphocytic leukemia cDNA library was studied by nucleic acid hybridization in human promyelocytic leukemia cells (HL-60) treated with chemical inducers of cell differentiation and in primary cells derived from 27 patients with leukemia or myelodysplastic syndrome. The differentiation of HL-60 cells into macrophage-like cells upon induction by 12-0-tetradecanoyl phorbol-13-acetate (TPA) was accompanied by rapid induction of the expression of 6-1E and 7-3G genes. The levels of expression of the 9-5C gene were not altered during macrophage-monocytic or granulocytic differentiation of HL-60 cells. The expression of the 6-1E and/or 7-3G gene was induced by TPA in four of 6 samples derived from patients who achieved complete remission, but not in any of the acute nonlymphocytic leukemia samples from patients who failed to achieve complete remission. These findings suggest that expression of the 6-1E and 7-3G genes is related to macrophage-monocytic differentiation and that alterations of these gene expressions in fresh leukemia cells after one hour of TPA treatment are of prognostic significance in predicting the response to therapy.  相似文献   

9.
10.
Although the research on the localization of trachea stem cells has made a rapid progress, the mechanism of proliferation and differentiation of trachea stem cells remains unclear. The objective of this study is to observe and analyze the recovery process of mice tracheal epithelium injured by 5-FU, and to investigate the mechanism involved in the regulation of tracheal stem cells proliferation and differentiation through morphological, immunofluorescence, and microarray analysis. After treatment with 5-FU, the mature cells were dead and desquamated. Only a few G0 phase cells remained on the basement membrane. When supplied with normal culture media, the cells eventually became flat, cubic, and restored as pseudostratified epithelium. These G0 phase cells were ABCG2 positive. It suggested that these cells could differentiate into cilia cells or Clara cells, and had the multi-differentiation ability of stem cells. We examinated the expression profile of genes involved in the stem cell differentiation in normal tracheal epithelial cells and the regenerated epithelial cells at 24 and 48 h after injured by 5-FU using gene microarray. After 24 h treatment, 8 genes were up-regulated and 31 genes were down-regulated. After 48 h treatment, 5 genes were up-regulated and 42 genes were down-regulated. The differential gene expressions in gene microarray analysis focused on cell cycle regulation, intercellular junction, fibroblast growth factors, bone morphogenetic protein, Notch and Wnt-signaling pathways, which suggested that the differential gene expressions might be closely associated with the proliferation and differentiation of tracheal stem cells.  相似文献   

11.
12.
Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and play an important role in development and in many cellular processes. We have found that BMP-2, BMP-6, and BMP-9 induce the most potent osteogenic differentiation of mesenchymal stem cells. Expression profiling analysis has revealed that the Inhibitors of DNA binding/differentiation (Id)-1, Id-2, and Id-3 are among the most significantly up-regulated genes upon BMP-2, BMP-6, or BMP-9 stimulation. Here, we sought to determine the functional role of these Id proteins in BMP-induced osteoblast differentiation. We demonstrated that the expression of Id-1, Id-2, and Id-3 genes was significantly induced at the early stage of BMP-9 stimulation and returned to basal levels at 3 days after stimulation. RNA interference-mediated knockdown of Id expression significantly diminished the BMP-9-induced osteogenic differentiation of mesenchymal progenitor cells. Surprisingly, a constitutive overexpression of these Id genes also inhibited osteoblast differentiation initiated by BMP-9. Furthermore, we demonstrated that BMP-9-regulated Id expression is Smad4-dependent. Overexpression of the three Id genes was shown to promote cell proliferation that was coupled with an inhibition of osteogenic differentiation. Thus, our findings suggest that the Id helix-loop-helix proteins may play an important role in promoting the proliferation of early osteoblast progenitor cells and that Id expression must be down-regulated during the terminal differentiation of committed osteoblasts, suggesting that a balanced regulation of Id expression may be critical to BMP-induced osteoblast lineage-specific differentiation of mesenchymal stem cells.  相似文献   

13.
The dioecious white campion (Silene latifolia) has been chosen as a working model for sexual development. In this species, sexual dimorphism is achieved through two distinct developmental blocks: inhibition of carpel development in male flowers, and early arrest of anther differentiation in female flowers. The combined advantages of the dioecious system and the availability of a sexual mutant lacking both male and female reproductive organs have been exploited in a molecular subtraction approach using male and asexual flower buds. This resulted in the cloning of 22 cDNA clones expressed in stamens at distinct stages of development. Fourteen of these clones corresponded to genes whose expression was detected in pre-meiotic stamens, a stage of development for which very little information is presently available. Furthermore, the absence of similarities with database sequences for ten clones suggests that they represent novel genes. Functional analysis of each clone will enable their positioning within the reproductive organ developmental pathway(s). In parallel, these clones are being exploited as developmental markers of early differentiation within the flower.  相似文献   

14.
Shen  Yuan  Iwao  Toyoki  Motomura  Taizo  Nagasato  Chikako 《Protoplasma》2021,258(1):19-32

Based on the morphology of gametes, sexual reproduction in brown algae is usually classified into three types: isogamy, anisogamy, and oogamy. In isogamy, chloroplasts and chloroplast DNA (chlDNA) in the sporophyte cells are inherited biparentally, while mitochondria (or mitochondrial DNA, mtDNA) is inherited maternally. In oogamy, chloroplasts and mitochondria are inherited maternally. However, the patterns of mitochondrial and chloroplast inheritance in anisogamy have not been clarified. Here, we examined derivation of mtDNA and chlDNA in the zygotes through strain-specific PCR analysis using primers based on single nucleotide polymorphism in the anisogamous brown alga Mutimo cylindricus. In 20-day-old sporophytes after fertilization, mtDNA and chlDNA derived from female gametes were detected, thus confirming the maternal inheritance of both organelles. Additionally, the behavior of mitochondria and chloroplasts in the zygotes was analyzed by examining the consecutive serial sections using transmission electron microscopy. Male mitochondria were isolated or compartmentalized by a double-membrane and then completely digested into a multivesicular structure 2 h after fertilization. Meanwhile, male chloroplasts with eyespots were observed even in 4-day-old, seven-celled sporophytes. The final fate of male chloroplasts could not be traced. Organelle DNA copy number was also examined in female and male gametes. The DNA copy number per chloroplast and mitochondria in male gametes was lower compared with female organelles. The degree of difference is bigger in mtDNA. Thus, changes in different morphology and DNA amount indicate that maternal inheritance of mitochondria and chloroplasts in this species may be based on different processes and timing after fertilization.

  相似文献   

15.
The ability of the GATA family of factors to interact with numerous other factors, co-factors, and repressors suggests that they may play key roles in tissues and cells where they are expressed. Adult mouse small intestine has been shown to express GATA-4, GATA-5, and GATA-6, where they have been implicated in the activation of a number of intestinal genes. Determination of which GATA factor(s) are involved in a specific function in tissues expressing multiple family members has proven difficult. The immunohistochemical analysis presented here demonstrate that within the mouse small intestine GATA-4/-5/-6 are found to be uniquely distributed among the various differentiated lineages of the intestinal epithelium. Among differentiated cells GATA-4 is found only in the villous enterocytes. GATA-5 is absent from enterocytes, but was found in the remaining lineages: goblet, Paneth and enteroendocrine. Additionally, high levels of GATA-6 are found in only one of these differentiated cell types, the enteroendocrine lineage. The observed distribution suggests that the GATA factors may have distinct roles in lineage allocation, lineage maintenance, and/or terminal differentiation events in small intestine.  相似文献   

16.
The region of the third chromosome (84D-F) of Drosophila melanogaster that contains the doublesex (dsx) locus has been cytogenetically analyzed. Twenty nine newly induced, and 42 preexisting rearrangements broken in dsx and the regions flanking dsx have been cytologically and genetically characterized. These studies established that the dsx locus is in salivary chromosome band 84E1-2. In addition, these observations provide strong evidence that the dsx locus functions only to regulate sexual differentiation and does not encode a vital function. To obtain new alleles at the dsx locus and to begin to analyze the genes flanking dsx, 59 lethal and visible mutations in a region encompassing dsx were induced. These mutations together with preexisting mutations in the region were deficiency mapped and placed into complementation groups. Among the mutations we isolated, four new mutations affecting sexual differentiation were identified. All proved to be alleles of dsx, suggesting that dsx is the only gene in this region involved in regulating sexual differentiation. All but one of the new dsx alleles have equivalent effects in males and females. The exception, dsxEFH55, strongly affects female sexual differentiation, but only weakly affects male sexual differentiation. The interactions of dsxEFH55 with mutations in other genes affecting sexual differentiation are described. These results are discussed in terms of the recent molecular findings that the dsx locus encodes sex-specific proteins that share in common their amino termini but have different carboxyl termini. The 72 mutations in this region that do not affect sexual differentiation identify 25 complementation groups. A translocation, T(2;3)Es that is associated with a lethal allele in one of these complementation groups is also broken at the engrailed (en) locus on the second chromosome and has a dominant phenotype that may be due to the expression of en in the anterior portion of the abdominal tergites where en is not normally expressed. The essential genes found in the 84D-F region are not evenly distributed throughout this region; most strikingly the 84D1-11 region appears to be devoid of essential genes. It is suggested that the lack of essential genes in this region is due to the region (1) containing genes with nonessential functions and (2) being duplicated, possibly both internally and elsewhere in the genome.  相似文献   

17.
The 1959 publication of the paper by Phoenix et al. was a major turning point in the study of sexual differentiation of the brain. That study showed that sex differences in behavior, and by extension in the brain, were permanently sexually differentiated by testosterone, a testicular secretion, during an early critical period of development. The study placed the brain together in a class with other major sexually dimorphic tissues (external genitalia and genital tracts), and proposed an integrated hormonal theory of sexual differentiation for all of these non-gonadal tissues. Since 1959, the organizational–activational theory has been amended but survives as a central concept that explains many sex differences in phenotype, in diverse tissues and at all levels of analysis from the molecular to the behavioral. In the last two decades, however, sex differences have been found that are not explained by such gonadal hormonal effects, but rather because of the primary action of genes encoded on the sex chromosomes. To integrate the classic organizational and activational effects with the more recently discovered sex chromosome effects, we propose a unified theory of sexual differentiation that applies to all mammalian tissues.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号