首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which iron uptake is facilitated by the siderophore rhodotorulic acid (RA) in the yeast Rhodotorula pilimanae was investigated with radioactively labeled Fe and RA and kinetically inert, chromic-substituted RA complexes. The weight of the evidence supports a model in which RA mediates iron transport to the cell but does not actually transport iron into the cell. It is proposed that RA exchanges the ferric ion at the cell surface with a membrane-bound chelating agent that completes the active transport of iron into the cell. Uptake of 55Fe in ferric rhodotorulate was much more rapid than uptake of RA itself. Two exchange-inert chromic complexes of RA showed no uptake.  相似文献   

2.
The yeast Rhodotorula pilimanae produces the dihydroxamate siderophore rhodotorulic acid (RA) in prodigious amounts when starved for iron. Synthetic dihydroxamate analogs of RA have been prepared in which the diketopiperazine ring of RA is replaced by a simple chain of n methylene groups. It is found that R. pilimanae is able to accumulate iron using these achiral complexes, as well as from simple monohydroxamate analogs, at rates comparable to those of RA. While the Fe2RA3 complex does not enter the cell, there is a receptor system whose geometric requirements for siderophore recognition have been probed using analogs. In contrast to mono- or dihydroxamate ligands, the trihydroxamate siderophores such as ferrioxamine B are completely ineffective at delivering iron to R. pilimanae. This is ascribed to the greater stability of these complexes, which blocks release of the Fe(III) in a ligand exchange process that is required for uptake. To explore whether this ligand exchange involves redox catalysis, Ga(III) was substituted for Fe(III). The gallium was taken up at rates near those of iron and were also energy-dependent, as determined by metabolic inhibition with KCN.  相似文献   

3.
Streptomyces pilosus is one of several microbes which produce ferrioxamine siderophores. In the accompanying paper (G. Müller and K. Raymond, J. Bacteriol. 160:304-312), the mechanism of iron uptake mediated by the endogenous ferrioxamines B, D1, D2, and E was examined. Here we report iron transport behavior in S. pilosus as mediated by the exogenous siderophores ferrichrome, ferrichrysin, rhodotorulic acid (RA), and synthetic enantio-RA. In each case iron acquisition depended on metabolic energy and had uptake rates comparable to that of [55Fe]ferrioxamine B. However, the synthetic ferric enantio-RA (which has the same preferred chirality at the metal center as ferrichrome) was twice as effective in supplying iron as was the natural ferric RA complex, suggesting that stereospecific recognition at the metal center is involved in the transport process. Iron uptake mediated by ferrichrome and ferric enantio-RA was strongly inhibited by kinetically inert chromic complexes of desferrioxamine B. These inhibition experiments indicate that iron from these exogenous siderophores is transported by the same uptake system as ferrioxamine B. Since the ligands have no structural similarity to ferrioxamine B except for the presence of three hydoxamate groups, we conclude that only the hydroxamate iron center and its direct surroundings are important for recognition and uptake. This hypothesis is supported by the fact that ferrichrome A and ferrirubin, which are both substituted at the hydroxamate carbonyl groups, were not (or were poorly) effective in supplying iron to S. pilosus.  相似文献   

4.
Two partially resolved chromatographic fractions of geometrical and optical isomers of the chromic complexes of desferricoprogen, a siderophore from Neurospora crassa, were obtained from high-pressure liquid chromatography on a reverse-phase matrix. The first fraction was identified as a cis complex with a 20% diastereomeric excess of the lambda isomer. The second fraction was identified as a mixture of several of the possible trans isomers with a net 20% diastereomeric excess of the delta isomers. These fractions were used to evaluate the stereospecificity of the coprogen-mediated iron uptake system with respect to the metal coordination center. Fraction II competitively inhibited coprogen uptake, whereas fraction I showed only slight inhibition. N. crassa accumulated chromium from fraction II faster than the rate of chromium uptake from fraction I. Neither fraction had a significant effect on the uptake of ferricrocin, suggesting that coprogen and ferricrocin are taken up by different receptor systems.  相似文献   

5.
Chromic complexes of N,N',N'-triacetylfusarinine C have been prepared and examined for biological activity in Mycelia sterilia EP-76. The iron transport system of this organism recognizes only the lambda coordination isomer of Cr(III)-triacetylfusarinine C even though the delta configuration predominates in solution. Chromium is excreted into the medium following triacetylfusarinine C-mediated uptake of the metal. Hydrogenation of the double bonds conjugated to the hydroxamic acid functions of triacetylfusarinine C yields four chromatographically distinct ferric complexes. Two of the complexes have the lambda configuration, while the other two have the opposite (delta) configuration. The complexes differ in effectiveness as siderophores in M. sterilia EP-76, the lambda isomers being most active.  相似文献   

6.
Metal complexes of mycobactin P and of desferrisideramines   总被引:3,自引:1,他引:2       下载免费PDF全文
Crystalline gallium mycobactin P and chromic mycobactin P have been prepared. The chromic compound, unlike other metallic complexes of mycobactin P, does not detectably exchange its metal with ferric iron; it competitively antagonizes the growth-promoting action of mycobactin P towards Mycobacterium johnei. Mycobactin P, desferrioxamine B and desferrichrysin form coloured 1:1 complexes with ammonium vanadate. The vanadyl complexes of the water-soluble desferrisideramines are formed in aqueous solution. Two distinct forms occur at pH7 and pH3; these are slowly interconvertible when the pH is changed. The complexes show other changes at lower pH values; unlike other metallic desferrisideramine complexes, the vanadyl compounds do not dissociate even in the strongest acids, but dissociate above pH9. Their properties have been studied spectrophotometrically, by electrophoresis and by electrometric titration. The affinity of mycobactin for ferric iron is greater than that of desferrioxamine B under two different conditions of measurement.  相似文献   

7.
Microbial iron transport studies of the structure and conformation dependent ferrichrome uptake system in Ustilago sphaerogena have been limited previously to kinetically labile metal ions such as the native ferrichrome complex and the aluminum(III) and gallium(III) analogs. Although two coordination isomers are possible (λ-cis amd δ-cis), no information can be obtained concerning their biological activity using kinetically labile complexes. In this report, both the ligand and chromic ion moieties of kinetically inert λ-cis-chromic [14C]-desferriferrichrome are shown to be taken up in Ustilago sphaerogena at rates comparable to that of ferrichrome. The λ-cis coordination isomer must be therefore at least one of the biologically active isomers and the transport system cannot rely on the rapid isomerization or dissociation of the labile ferric complex.  相似文献   

8.
A variety of fungi are known to overproduce and excrete desferri-siderophores under iron limitation. After complexing with ferric iron, octahedral complexes are formed and taken up by siderophore-specific transport systems. These systems represent energy consuming systems as inferred from their sensitivity to respiratory inhibitors, uncouplers and changes of the membrane potential and are able to recognize structure and stereochemical configuration of the various siderophore molecules. Ferrichromes, the most common siderophores in fungi, are generally recognized as Lambda-cis coordination complexes. Triacetylfusarinins, although prevailing as Delta-cis optical isomers in aqueous solution, are assumed to be taken up after isomerization to the corresponding Lambda-cis complexes. However, coprogens which also show a predominant Delta-absolute configuration in solution seem to be transported without prior isomerization. When both, ferrichromes as well as triacetylfusarines or coprogens are taken up, competition during uptake is observed, suggesting the presence of a common transport system during translocation of siderophores across the fungal plasma membrane.  相似文献   

9.
Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is an obligatory prerequisite for iron uptake and is mediated by redox systems localized on the plasma membrane. Plasma membrane-bound iron reductase systems catalyze the transmembrane electron transport from cytosolic reduced pyridine nucleotides to extracellular iron compounds. Natural and synthetic ferric complexes can act as electron acceptors.This paper gives an overview about the present knowledge on iron reductase systems at the plant plasma membrane with special emphasis on biochemical characteristics and localisation.  相似文献   

10.
Rhizoferrin-mediated iron uptake was studied in two different classes of organisms: a rhizoferrin producing fungus, Absidia spinosa (Zygomycetes), and a ferric rhizoferrin utilizing bacterium, Morganella morganii (Enterobacteriaceae). The uptake of iron rhizoferrin and some of its metal analogs (chromium, rhodium, gallium), was followed and kinetic parameters measured in A. spinosa. These metal ion complexes were taken up in a concentration- and energy-dependent manner indicative of an active transport system. The uptake of the kinetically inert chromium and rhodium and reductively inert gallium complexes suggests a variation of the so called shuttle mechanism may be operative. The recognition of one geometrical isomer of chromium-rhizoferrin but not another argues for a degree of stereospecificity in the uptake process. A growth promotion plate assay was used to examine metal-rhizoferrin uptake in M. morganii. The results indicate that a number of factors including the nature of the chelating agent (e.g. bipyridyl or EDDHA) used to induce iron deficiency need to be considered before these simple plate assays can be reliably used to indicate the presence or absence of a particular siderophore uptake system.  相似文献   

11.
Oxidations of three porphyrin-iron(III) complexes (1) with ferric perchlorate, Fe(ClO4)3, in acetonitrile solutions at −40 °C gave metastable porphyrin-iron(IV) diperchlorate complexes (2) that isomerized to known iron(III) diperchlorate porphyrin radical cations (3) when the solutions were warmed to room temperature. The 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetramesitylporphyrin (TMP), and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) systems were studied by UV-visible spectroscopy. Low temperature NMR spectroscopy and effective magnetic moment measurements were possible with the TPP and TMP iron(IV) complexes. Reactions of two corrole systems, 5,10,15-tris(pentafluorophenyl)corrole (TPFC) and 5,15-bis(pentafluorophenyl)-10-p-methoxyphenylcorrole (BPFMC), also were studied. The corrole-iron(IV) chlorides reacted with silver salts to give corrole-iron(IV) complexes. The corrole-iron(IV) nitrate complexes were stable at room temperature. (TPFC)-iron(IV) toslyate, (TPFC)-iron(IV) chlorate, and (BPFMC)-iron(IV) chlorate were metastable and rearranged to their electronic isomers iron(III) corrole radical cations at room temperature. (TPFC)-iron(III) perchlorate corrole radical cation was the only product observed from reaction of the corrole-iron(IV) chloride with silver perchlorate. For the metastable iron(IV) species, the rates of isomerizations to the iron(III) macrocycle radical cation electronic isomers in dilute acetonitrile solutions were relatively insensitive to electron demands of the macrocyclic ligand but reflected the binding strength of the ligand to iron. Kinetic studies at varying temperatures and concentrations indicated that the mechanisms of the isomerization reactions are complex, involving mixed order reactivity.  相似文献   

12.
The ligand-gated outer membrane porin FepA serves Escherichia coli as the receptor for the siderophore ferric enterobactin. We characterized the ability of seven analogs of enterobactin to supply iron via FepA by quantitatively measuring the binding and transport of their 59Fe complexes. The experiments refuted the idea that chirality of the iron complex affects its recognition by FepA and demonstrated the necessity of an unsubstituted catecholate coordination center for binding to the outer membrane protein. Among the compounds we tested, only ferric enantioenterobactin, the synthetic, left-handed isomer of natural enterobactin, and ferric TRENCAM, which substitutes a tertiary amine for the macrocyclic lactone ring of ferric enterobactin but maintains an unsubstituted catecholate iron complex, were recognized by FepA (Kd ≈ 20 nM). Ferric complexes of other analogs (TRENCAM-3,2-HOPO; TREN-Me-3,2-HOPO; MeMEEtTAM; MeME-Me-3,2-HOPO; K3MECAMS; agrobactin A) with alterations to the chelating groups and different net charge on the iron center neither adsorbed to nor transported through FepA. We also compared the binding and uptake of ferric enterobactin by homologs of FepA from Bordetella bronchisepticus, Pseudomonas aeruginosa, and Salmonella typhimurium in the native organisms and as plasmid-mediated clones expressed in E. coli. All the transport proteins bound ferric enterobactin with high affinity (Kd ≤ 100 nM) and transported it at comparable rates (≥50 pmol/min/109 cells) in their own particular membrane environments. However, the FepA and IroN proteins of S. typhimurium failed to efficiently function in E. coli. For E. coli, S. typhimurium, and P. aeruginosa, the rate of ferric enterobactin uptake was a sigmoidal function of its concentration, indicating a cooperative transport reaction involving multiple interacting binding sites on FepA.  相似文献   

13.
Separate pathways for transport of nontransferrin ferric and ferrous iron into tissue cultured cells were demonstrated. Neither the ferric nor ferrous pathway was shared with either zinc or copper. Manganese shared the ferrous pathway but had no effect on cellular uptake of ferric iron. We postulate that ferric iron was transported into cells via beta(3)-integrin and mobilferrin (IMP), whereas ferrous iron uptake was facilitated by divalent metal transporter-1 (DMT-1; Nramp-2). These conclusions were documented by competitive inhibition studies, utilization of a beta(3)-integrin antibody that blocked uptake of ferric but not ferrous iron, development of an anti-DMT-1 antibody that blocked ferrous iron and manganese uptake but not ferric iron, transfection of DMT-1 DNA into tissue culture cells that showed enhanced uptake of ferrous iron and manganese but neither ferric iron nor zinc, hepatic metal concentrations in mk mice showing decreased iron and manganese but not zinc or copper, and data showing that the addition of reducing agents to tissue culture media altered iron binding to proteins of the IMP and DMT-1 pathways. Although these experiments show ferric and ferrous iron can enter cells via different pathways, they do not indicate which pathway is dominant in humans.  相似文献   

14.
The uptake kinetics of cisplatin analogs of 1,2-cyclohexanediamine(dach) isomers with various leaving groups, by human erythrocytes in plasma isotonic buffer, were studied. The experimental results showed that the uptake rate constants (k values) decrease with the change of leaving group in the sequence: chloride (Cl) > squaric acid (SA) > oxalate (OX) > demethylcantharic acid (DA), with the same dach isomer as carrier group. It is noteworthy that for the platinum (II) complexes with the same leaving group, the k values always reduce as: 1R, 2R-dach > 1R, 2S-dach > 1S, 2S-dach. This result reflects the chirality selectivity. No differences in reactivity to protein thiols and effects on membrane permeability were found for the R,R-, R,S-, S,S-isomeric complexes. It is proposed that the chirality selectivity in uptake is due to the recognition of the chirality of the platinum complexes by the erythrocyte membrane. The interactions between the chiral platinum complexes and the head groups of the membrane phospholipid molecules are probably involved.  相似文献   

15.
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.  相似文献   

16.
W J Caspary  D A Lanzo  C Niziak 《Biochemistry》1981,20(13):3868-3875
We have previously shown that the bleomycin-induced autooxidation of ferrous iron follows Michaelis--Menten kinetics which are characteristic of enzymatic reactions [Caspary, W. J., Lanzo, D. A., Niziak, C., Friedman, R., & Bachur, N. R. (1979) Mol. Pharmacol. 16, 256]. In this paper, we identify the iron complexes formed during this reaction. The first is a ferrous iron--bleomycin complex which can be considered the catalyst substrate complex. The product of this reaction is a ferric iron--bleomycin complex which is found in a low-spin and a high-spin form. The relative concentrations of these two forms are a function of pH. Glutathione, a biologically relevant reducing agent, binds to the ferric iron--bleomycin complex, reduces it, and may serve as a model for the reduction of the ferric iron--bleomycin complex to the ferrous state during the catalytic cycle. Oxygen uptake induced by bleomycin and ferrous iron is not inhibited by superoxide dismutase (SOD) or catalase. In the absence of bleomycin, catalase strongly inhibits oxygen uptake. This suggests the presence of a relatively stable intermediate in which the superoxide radical is not readily accessible to superoxide dismutase. At pH 9.3, we are able to observe a transient species by electron spin resonance (ESR). When potassium superoxide is added to the ferric iron--bleomycin complex, the same ESR spectrum is produced. We suggest that a transient species composed of a ferric iron, the superoxide ion, and bleomycin is formed. The precise nature of the binding cannot be determined from the data presented.  相似文献   

17.
Nitrosyliron(III) hemoglobin: autoreduction and spectroscopy   总被引:3,自引:0,他引:3  
A W Addison  J J Stephanos 《Biochemistry》1986,25(14):4104-4113
Nitrosyl complexes of the iron(III) forms of myoglobin, human hemoglobin, Glycera dibranchiata hemoglobins (Hbm and Hbh), and model iron(II) and iron(III) synthetic porphyrins including octaethylporphyrin (OEP) have been prepared. The iron(III) heme proteins are electron spin (paramagnetic) resonance (ESR) silent, while hexacoordinate solution structures are indicated for [Fe(OEP)(NO)2]ClO4 and for Hbm(II)NO, which has an ESR spectrum similar to that of Mb(II)NO and the hexacoordinate iron(II) model complex Fe(OEP)NO(BzIm). The splitting of the alpha- and beta-bands in the optical spectrum of Mb(III)NO and Hbh(III)NO contrasts markedly with the sharp, single bands observed in that of Hbm-(III)NO. The nondegeneracy of the dxz and dyz orbitals in Mb(III)NO and Hbh(III)NO is attributed to the influence of the distal histidine. Circular dichroism spectra were obtained for Hbm(III)NO, Hbm(II)NO, Hbh(III)NO, Hbh(II)NO, Mb(II)NO, and Mb(III)NO. The vicinal chiral center contribution that governs the heme protein CD leads to low Kuhn anisotropies, which have been used to assign certain electronic transitions. The Hb(III)NO spectrum is not stable but transforms into that of Hb(II)NO. This autoredox process follows kinetics that are first order in FeIIINO. The relative rates of autoreduction (25 degrees C, 1 atm NO) are Mb(III)NO less than Hbm(III)NO less than Hb alpha(III)NO less than HbA(III)NO. At high NO partial pressure or after "recycling" of HbA, the rates of reduction decrease. The first step in the reaction of NO with the ferric heme is the reversible formation of the formally iron(III) adduct. This reacts with another molecule of NO, generating the final heme(II)-NO via nitrosylation of NO itself or of an endogenous nucleophile. Kinetic and spectroscopic evidence shows involvement of trans-heme-(NO)2 in the reaction. The activation parameters delta H and delta S were determined. The overall reaction is photoenhanced.  相似文献   

18.
Under iron limitation, bacteria scavenge ferric (Fe3+) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram‐negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain‐of‐function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non‐selective uptake components that do not require mutation to accommodate new iron sources.  相似文献   

19.
Low temperature photolysis of nitric oxide from the nitrosyl complexes of ferric cytochrome P450scc was examined by EPR spectroscopy to elucidate the stereochemical interaction between heme-bound ligand and side-chain of cholesterol or its hydroxylated analogues at the substrate-binding site. The photoproducts of the NO complexes trapped at 5 K exhibited new EPR absorptions providing information on the steric crowding of the distal heme moiety. Without substrate, the photoproduct exhibited a broad EPR absorption at g-8 due to magnetic dipole-dipole interaction between the photo-dissociated NO (S = 1/2) and the ferric iron (S = 5/2). This indicates that the photo-dissociated NO can move far away from the heme iron in the less restricted distal heme moiety of the substrate-free cytochrome P450scc. In the presence of substrates, such as cholesterol, 20(S)-hydroxycholesterol, 22(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 25-hydroxycholesterol, the EPR spectra of the photoproducts exhibited many variations having broad g-8 absorptions and/or the widespread signals together with zero-field absorption. Among the steroid complexes used, 20(S)-hydroxycholesterol complex exhibited a conspicuously widespread EPR signal with a distinct zero-field absorption due to a spin-coupled interaction between the ferric iron (S = 5/2) and the photolyzed NO (S = 1/2). These results indicate that the 20(S)-hydroxycholesterol complex has restricted substrate-binding structure and that the hydroxylation of the cholesterol side-chain at the 22R position is necessary to proceed the side-chain cleavage reaction properly in cytochrome P450scc.  相似文献   

20.
Use of superparamagnetic particles for isolation of cells   总被引:10,自引:0,他引:10  
This report describes the preparation and characterization of synthetic ferritin-like particles produced by precipitation of magnetite from a mixture of ferrous and ferric ions in the presence of dextran. The 3-nm diameter particles, containing magnetite cores surrounded by chemisorbed dextran, had a magnetization of 46.7 emu/g of iron with M?ssbauer quadrupole splitting of 2 delta = 0.76 mm/s. The application of these particles as a laboratory reagent for isolation of Legionella from other water bacteria was successfully tested. A 400-fold enrichment for Legionella was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号