首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gametogenesis in males and females differs in many ways. An important difference in Drosophila is that recombination between homologous chromosomes occurs only in female meiosis. Here, we report that this process relies on the correct functioning of Sex-lethal (Sxl) which is primarily known as the master gene in somatic sex determination. Certain alleles of this gene (Sxl(fs)) disrupt the germline, but not the somatic function of Sxl and cause an arrest of germ cell development during cystocyte proliferation. Using dominant suppressor mutations that relieve this early block in Sxl(fs) mutant females, we discovered additional requirements of Sxl for normal meiotic differentiation of the oocyte. Females mutant for Sxl(fs) and carrying a suppressor become fertile, but pairing of homologous chromosomes and formation of chiasmata is severely perturbed, resulting in an almost complete lack of recombinants and a high incidence of non-disjunction events. Similar results were obtained when germline expression of wild-type Sxl was compromised by mutations in virilizer (vir), a positive regulator of Sxl. Ectopic expression of a Sxl transgene in premeiotic stages of male germline development, on the other hand, is not sufficient to allow recombination to take place, which suggests that Sxl does not have a discriminatory role in this female-specific process. We propose that Sxl performs at least two tasks in oogenesis: an 'early' function in formation of the egg chamber, and a 'late' function in progression of the meiotic cell cycle, suggesting that both events are coordinated by a common mechanism.  相似文献   

5.
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors--the U1/U2 snRNP protein Sans-fils (Snf), the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2)d--that have been directly implicated in Sxl splicing regulation.  相似文献   

6.
7.
8.
The on/off state of the binary switch gene Sex-lethal (Sxl), which controls somatic sexual development in Drosophila melanogaster, is regulated at the level of alternative splicing. In males, in which the gene is off, the default splicing machinery produces nonfunctional mRNAs; in females, in which the gene is on, the autoregulatory activity of the Sxl proteins directs the splicing machinery to produce functional mRNAs. We have used germ line transformation to analyze the mechanism of default and regulated splicing. Our results demonstrate that a blockage mechanism is employed in Sxl autoregulation. However, in contrast to transformer, in which Sxl appears to function by preventing the interaction of splicing factors with the default 3' splice site, a different strategy is used in autoregulation. (i) Multiple cis-acting elements, both upstream and downstream of the male exon, are required. (ii) These cis-acting elements are distant from the splice sites they regulate, suggesting that the Sxl protein cannot function in autoregulation by directly competing with splicing factors for interaction with the regulated splice sites. (iii) The 5' splice site of the male exon appears to be dominant in regulation while the 3' splice site plays a subordinate role.  相似文献   

9.
10.
Siera SG  Cline TW 《Genetics》2008,180(4):1963-1981
We describe a surprising new regulatory relationship between two key genes of the Drosophila sex-determination gene hierarchy, Sex-lethal (Sxl) and transformer (tra). A positive autoregulatory feedback loop for Sxl was known to maintain somatic cell female identity by producing SXL-F protein to continually instruct the target gene transformer (tra) to make its feminizing product, TRA-F. We discovered the reciprocal regulatory effect by studying genetically sensitized females: TRA-F from either maternal or zygotic tra expression stimulates Sxl-positive autoregulation. We found female-specific tra mRNA in eggs as predicted by this tra maternal effect, but not predicted by the prevailing view that tra has no germline function. TRA-F stimulation of Sxl seems to be direct at some point, since Sxl harbors highly conserved predicted TRA-F binding sites. Nevertheless, TRA-F stimulation of Sxl autoregulation in the gonadal soma also appears to have a cell-nonautonomous aspect, unprecedented for somatic Sxl regulation. This tra-Sxl retrograde regulatory circuit has evolutionary implications. In some Diptera, tra occupies Sxl's position as the gene that epigenetically maintains female identity through direct positive feedback on pre-mRNA splicing. The tra-mediated Sxl feedback in Drosophila may be a vestige of regulatory redundancy that facilitated the evolutionary transition from tra to Sxl as the master sex switch.  相似文献   

11.
In Drosophila melanogaster, Sex-lethal (Sxl) controls autoregulation and sexual differentiation by alternative splicing but regulates dosage compensation by translational repression. To elucidate how Sxl functions in splicing and translational regulation, we have ectopically expressed a full-length Sxl protein (Sx.FL) and a protein lacking the N-terminal 40 amino acids (Sx-N). The Sx.FL protein recapitulates the activity of Sxl gain-of-function mutations, as it is both sex transforming and lethal in males. In contrast, the Sx-N protein unlinks the sex-transforming and male-lethal effects of Sxl. The Sx-N proteins are compromised in splicing functions required for sexual differentiation, displaying only partial autoregulatory activity and almost no sex-transforming activity. On the other hand, the Sx-N protein does retain substantial dosage compensation function and kills males almost as effectively as the Sx.FL protein. In the course of our analysis of the Sx.FL and Sx-N transgenes, we have also uncovered a novel, negative autoregulatory activity, in which Sxl proteins bind to the 3' untranslated region of Sxl mRNAs and decrease Sxl protein expression. This negative autoregulatory activity may be a homeostasis mechanism.  相似文献   

12.
L N Keyes  T W Cline  P Schedl 《Cell》1992,68(5):933-943
  相似文献   

13.
14.
15.
16.
17.
In Drosophila melanogaster, regulation of the sex determination genes throughout development occurs by sex-specific splicing of their products. The first gene is Sex-lethal(Sxl). The downstream target of Sxl is the gene transformer (tra): the Sxl protein controls the female-specific splicing of the Tra pre-mRNA. The downstream target of the gene tra is the gene double-sex (dsx): the Tra protein of females, controls the female-specific splicing of the Dsx pre-mRNA. We have identified a gene, female-lethal-2-d fl(2)d, whose function is required for the female-specific splicing of Sxl pre-mRNA. In this report we analyze whether the gene fl(2)d is also required for the sex-specific splicing of both Tra and Dsx pre-mRNAs. We found that the Sxl protein is not sufficient for the female-specific splicing of Tra pre-mRNA, the fl(2)d function also being necessary. This gene, however, is not required for the female-specific splicing of Dsx pre-mRNA.  相似文献   

18.
19.
 In Drosophila melanogaster, regulation of the sex determination genes throughout development occurs by sex-specific splicing of their products. The first gene is Sex-lethal(Sxl). The downstream target of Sxl is the gene transformer (tra): the Sxl protein controls the female-specific splicing of the Tra pre-mRNA. The downstream target of the gene tra is the gene double-sex (dsx): the Tra protein of females, controls the female-specific splicing of the Dsx pre-mRNA. We have identified a gene, female-lethal-2-d fl(2)d, whose function is required for the female-specific splicing of Sxl pre-mRNA. In this report we analyze whether the gene fl(2)d is also required for the sex-specific splicing of both Tra and Dsx pre-mRNAs. We found that the Sxl protein is not sufficient for the female-specific splicing of Tra pre-mRNA, the fl(2)d function also being necessary. This gene, however, is not required for the female-specific splicing of Dsx pre-mRNA. Received:23 May 1996 Accepted:3 July 1996  相似文献   

20.
H Amrein  M Gorman  R N?thiger 《Cell》1988,55(6):1025-1035
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号