首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Theiler's murine encephalomyelitis virus (TMEV) results in a persistent central nervous system infection (CNS) and immune-mediated demyelination in mice. TMEV largely persists in macrophages (Ms) in the CNS, and infected Ms in vitro undergo apoptosis, whereas the infection of other rodent cells produces necrosis. We have found that necrosis is the dominant form of cell death in BeAn virus-infected BHK-21 cells but that ~20% of cells undergo apoptosis. Mcl-1 was highly expressed in BHK-21 cells, and protein levels decreased upon infection, consistent with onset of apoptosis. In infected BHK-21 cells in which Mcl-1 expression was knocked down using silencing RNAs there was a 3-fold increase in apoptotic cell death compared to parental cells. The apoptotic program switched on by BeAn virus is similar to that in mouse Ms, with hallmarks of activation of the intrinsic apoptotic pathway in a tumor suppressor protein p53-dependent manner. Infection of stable Mcl-1-knockdown cells led to restricted virus titers and increased physical to infectious particle (PFU) ratios, with additional data suggesting that a late step in the viral life cycle after viral RNA replication, protein synthesis, and polyprotein processing is affected by apoptosis. Together, these results indicate that Mcl-1 acts as a critical prosurvival factor that protects against apoptosis and allows high yields of infectious virus in BHK-21 cells.  相似文献   

3.
4.
The genomes of the rotaviruses consist of 11 segments of double-stranded RNA. During RNA replication, the viral plus-strand RNA serves as the template for minus-strand RNA synthesis. To characterize the kinetics of RNA replication, the synthesis and steady-state levels of viral plus- and minus-strand RNA and double-stranded RNA in simian rotavirus SA11-infected MA104 cells were analyzed by electrophoresis on 1.75% agarose gels containing 6 M urea (pH 3.0). Synthesis of viral plus-strand and minus-strand RNAs was detected initially at 3 h postinfection. The steady-state levels of plus- and minus-strand RNAs increased from this time until 9 to 12 h postinfection, at which time the levels were maximal. Pulse-labeling of infected cells with [3H]uridine showed that the ratio of plus- to minus-strand RNA synthesis changed during infection and that the maximal level of minus-strand RNA synthesis occurred several hours prior to the peak of plus-strand RNA synthesis. No direct correlation was found between the levels of plus-strand and minus-strand RNA synthesis in the infected cell. Pulse-labelling studies indicated that both newly synthesized and preexisting plus-strand RNA can act as templates for minus-strand RNA synthesis throughout infection. Studies also showed that less than 1 h was required between the synthesis of minus-strand RNA in vivo and its release from the cell within virions.  相似文献   

5.
6.
Rabies virus pathogenesis was studied in a mouse model by inoculation of the masseter muscle. At different intervals, the masseter muscle, trigeminal ganglia, and brain were analyzed for virus-specific RNA with a polymerase chain reaction assay, which revealed that as early as 18 h postinfection (p.i.), virus-specific RNA was present in the trigeminal ganglia, and at 24 h p.i., viral RNA was identified in the brain stem. Analysis of the masseter muscle demonstrated virus at 1 h p.i. but no virus-specific RNA between 6 and 30 h p.i., indicating that virus invaded the nerve ending directly, without prior replication in the muscle. At 36 h p.i., viral RNA was detected again in the masseter muscle. Selective amplification of plus- and minus-strand RNA isolated from the masseter muscle at 96 h p.i. revealed that the majority of the rabies virus-specific RNA was in the positive sense, suggesting virus replication in muscle tissue during late stages of infection.  相似文献   

7.
The continued presence of virus-specific CD8(+) T cells within the central nervous system (CNS) following resolution of acute viral encephalomyelitis implicates organ-specific retention. The role of viral persistence in locally maintaining T cells was investigated by infecting mice with either a demyelinating, paralytic (V-1) or nonpathogenic (V-2) variant of a neurotropic mouse hepatitis virus, which differ in the ability to persist within the CNS. Class I tetramer technology revealed more infiltrating virus-specific CD8(+) T cells during acute V-1 compared to V-2 infection. However, both total and virus-specific CD8(+) T cells accumulated at similar peak levels in spinal cords by day 10 postinfection (p.i.). Decreasing viral RNA levels in both brains and spinal cords following initial virus clearance coincided with an overall progressive loss of both total and virus-specific CD8(+) T cells. By 9 weeks p.i., T cells had largely disappeared from brains of both infected groups, consistent with the decline of viral RNA. T cells also completely disappeared from V-2-infected spinal cords coincident with the absence of viral RNA. By contrast, a significant number of CD8(+) T cells which contained detectable viral RNA were recovered from spinal cords of V-1-infected mice. The data indicate that residual virus from a primary CNS infection is a vital component in mediating local retention of both CD8(+) and CD4(+) T cells and that once minimal thresholds of stimuli are lost, T cells within the CNS cannot survive in an autonomous fashion.  相似文献   

8.
The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times after infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [3H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minus-strand RNA synthesis was three- to fourfold more sensitive to inhibition by cycloheximide than was plus-strand synthesis.  相似文献   

9.
The time courses of poliovirus plus- and minus-strand RNA synthesis in infected HEp-2 cells were monitored separately, using a quantitative RNase assay. In parallel, viral RNA and proteins were located in situ by confocal microscopy within cells fixed by a protocol determined to retain their native size and shape. Plus- and minus-strand RNAs were visualized by fluorescent in situ hybridization (FISH) with strand-specific riboprobes. The probes were labelled with different fluorochromes to allow for the simultaneous detection of plus- and minus-strand RNA. The FISH experiments showed minus-strand RNA to be present in distinct, regularly sized, round structures throughout the viral replication cycle. Plus-strand RNA was found in the same structures and also in smaller clusters of vesicles. Association of viral RNA with membranes was demonstrated by combining FISH with immunofluorescence (IF) detection of the viral 2B- and 2C-containing P2 proteins, which are known to be markers for virus-induced membranes. At early times postinfection, the virus-induced membranous structures were distributed through most of the cytoplasm, whereas around peak RNA synthesis, both RNA-associated membranous structures migrated to the center of the cell. During this process, the plus- and minus-strand-containing larger structures stayed as recognizable entities, whereas the plus-strand-containing granules coalesced into a juxtanuclear area of membranous vesicles. An involvement of Golgi-derived membranes in the formation of virus-induced vesicles and RNA synthesis early in infection was investigated by IF with 2C- and Golgi-specific antibodies.  相似文献   

10.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse and belongs to the Picornaviridae family. TMEV strains are divided into two subgroups on the basis of their pathogenicity. The first group contains two neurovirulent strains, FA and GDVII, which cause a rapid fatal encephalitis. The second group includes persistent strains, like DA and BeAn, which produce a biphasic neurological disease in susceptible mice. Persistence of these viruses in the white matter of the spinal cord leads to chronic inflammatory demyelination. L929 cells, which are susceptible to TMEV infection, were subjected to physicochemical mutagenesis. Cellular clones that became resistant to TMEV infection were selected by viral infection. Three such mutants resistant to strain GDVII were characterized to determine the step of the virus cycle that was inhibited. The mutation present in one of these mutant cell lines inhibited, by more than 1,000-fold, the entry of strain GDVII but hardly decreased infection by strain DA. In the two other cellular mutants, replication of the viral genome was slowed down. Interestingly, one of these mutant cell lines resisted infection by both the persistent and neurovirulent strains while the second cell line resisted infection by strain GDVII but remained susceptible to the persistent virus. These results show that although they have 95% identity at the amino acid sequence level, neurovirulent and persistent viruses use partly distinct pathways for both entry into cells and genome replication.  相似文献   

11.
We previously characterized the expression and function of the protein tyrosine phosphatase SHP-1 in the glia of the central nervous system (CNS). In the present study, we describe the role of SHP-1 in virus infection of glia and virus-induced demyelination in the CNS. For in vivo studies, SHP-1-deficient mice and their normal littermates received an intracerebral inoculation of an attenuated strain of Theiler's murine encephalomyelitis virus (TMEV). At various times after infection, virus replication, TMEV antigen expression, and demyelination were monitored. It was found that the CNS of SHP-1-deficient mice uniquely displayed demyelination and contained substantially higher levels of virus than did that of normal littermate mice. Many infected astrocytes and oligodendrocytes were detected in both brains and spinal cords of SHP-1-deficient but not normal littermate mice, showing that the virus replicated and spread at a much higher rate in the glia of SHP-1-deficient animals. To ascertain whether the lack of SHP-1 in the glia was primarily responsible for these differences, glial samples from these mice were cultured in vitro and infected with TMEV. As in vivo, infected astrocytes and oligodendrocytes of SHP-1-deficient mice were much more numerous and produced more virus than did those of normal littermate mice. These findings indicate that SHP-1 is a critical factor in controlling virus replication in the CNS glia and virus-induced demyelination.  相似文献   

12.
Theiler’s murine encephalomyelitis virus (TMEV) induces immune-mediated demyelination after intracerebral inoculation of the virus into susceptible mouse strains. We isolated from a TMEV BeAn 8386 viral stock, a low-pathogenic variant which requires greater than a 10,000-fold increase in viral inoculation for the manifestation of detectable clinical signs. Intracerebral inoculation of this variant virus induced a strong, long-lasting, protective immunity from the demyelinating disease caused by pathogenic TMEV. The levels of antibodies to the whole virus as well as to the major linear epitopes were similar in mice infected with either the variant or wild-type virus. However, persistence of the variant virus in the central nervous system (CNS) of mice was significantly lower than that of the pathogenic virus. In addition, the T-cell response to the predominant VP1 (VP1233–250) epitope in mice infected with the variant virus was significantly weaker than that in mice infected with the parent virus, while similar T-cell responses were induced against another predominant epitope (VP274–86). Further analyses indicated that a change of lysine to arginine at position 244 of VP1, which is the only amino acid difference in the P1 region, is responsible for such differential T-cell recognition. Thus, the difference in the T-cell reactivity to this VP1 region as well as the low level of viral persistence in the CNS may account for the low pathogenicity of this spontaneous variant virus.  相似文献   

13.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

14.
15.
Short-lived minus-strand polymerase for Semliki Forest virus   总被引:21,自引:15,他引:6       下载免费PDF全文
Semliki Forest virus (SFV)-infected BHK-21, Vero, and HeLa cells incorporated [3H]uridine into 42S and 26S plus-strand RNA and into viral minus-strand RNA (complementary to the 42S virion RNA) early in the infectious cycle. Between 3 and 4 h postinfection, the synthesis of minus-strand RNA ceased in these cultures, although the synthesis of plus-strand RNA continued at a maximal rate. At the time of cessation of minus-strand RNA synthesis, two changes in the pattern of viral protein synthesis were detected: a decrease in the translation of nonstructural proteins and an increase in the translation of the viral structural proteins. Addition of cycloheximide and puromycin to cultures of SFV-infected BHK cells actively synthesizing both viral plus- and minus-strand RNA resulted within 15 to 30 min in the selective shutoff of minus-strand RNA synthesis. Removal of the cycloheximide-containing medium led to the resumption of minus-strand synthesis and to an increased rate of viral RNA synthesis. We conclude that the minus-strand polymerase regulates the rate of SFV plus-strand RNA synthesis by determining the number of minus-strand templates and that the synthesis of the minus-strand templates is regulated at the level of translation by a mechanism which utilizes one or more short-lived polymerase proteins.  相似文献   

16.
Infection of susceptible mouse strains with BeAn, a less virulent strain of Theiler's murine encephalomyelitis virus (TMEV), results in immune system-mediated demyelinating lesions in the central nervous system (CNS) similar to those in multiple sclerosis. Since macrophages appear to carry the major detectable antigen burden in vivo, and purification of sufficient cell numbers from the CNS for detailed analysis is difficult, macrophage-like cell lines provide an accessible system with which to study virus-macrophage interactions. The myeloid precursor cell line M1 differentiates in response to cytokines and expresses many characteristics of tissue macrophages. Incubation of TMEV with undifferentiated M1 cells produced neither infection nor apoptosis, whereas differentiated M1 (M1-D) cells developed a restricted virus infection and changes indicative of apoptosis. Virus binding and RNA replication as well as cellular production of alpha/beta interferons increased with differentiation. Although the amount of infectious virus was highly restricted, BeAn-infected M1-D cells synthesized and appropriately processed virus capsid proteins at levels comparable to those for permissive BHK-21 cells. Analysis of Bcl-2 protein family expression in undifferentiated and differentiated cells suggests that susceptibility of M1-D cells to apoptosis may be controlled, in part, by expression of the proapoptotic alpha isoform of Bax and Bak. These data suggest that macrophage differentiation plays a role in susceptibility to TMEV infection and apoptosis.  相似文献   

17.
Theiler's murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus in the family Picornaviridae, is a highly cytolytic virus that produces necrotic death in rodent cells except for macrophages, which undergo apoptosis. In the present study we have analyzed the kinetics of BeAn virus infection in M1-D cells, in order to temporally relate virus replication to the apoptotic signaling events. Apoptosis was associated with early exponential virus growth from 1 to 12 h postinfection (p.i.); however, >/=80% of peak infectivity was lost by 16 to 24 h p.i. The pan-caspase inhibitor qVD-OPh led to significantly higher virus yields, while zVAD-fmk completely inhibited virus replication until 10 h p.i., precluding its assessment in apoptosis. In contrast, while zVAD-fmk significantly inhibited BeAn virus replication in BHK-21 cells at 12 and 16 h p.i., virus replication at these time points was not altered by qVD-OPh. Bax translocation into mitochondria, efflux of cytochrome c into the cytoplasm, and activation of caspases 9 and 3 between approximately 8 and 12 h p.i. (all hallmarks of the intrinsic apoptotic pathway) were transiently inhibited by expression of Bcl-2, which is not expressed in M1-D cells. Thus, BeAn virus infection in M1-D macrophages, which restricts virus replication, provides a potential mechanism for modulating TMEV neurovirulence during persistence in the mouse central nervous system.  相似文献   

18.
E Cash  M Chamorro    M Brahic 《Journal of virology》1988,62(5):1824-1826
Theiler's virus, a murine picornavirus, causes a chronic neurological disease characterized by primary demyelination in SJL/J mice. The lesions are very reminiscent of those of multiple sclerosis. Theiler's virus persists in oligodendrocytes and to a lesser extent in astrocytes and macrophages throughout the disease. Viral RNA and capsid protein syntheses are minimal in these cells. This restriction could play a central role in the mechanism of virus persistence. By quantitating plus- and minus-strand RNAs in infected central nervous system cells, we showed that RNA replication was blocked at the level of minus-strand RNA synthesis.  相似文献   

19.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) produces chronic demyelination and persistent infection in the central nervous system (CNS) of susceptible SJL mice. This series of experiments examined the contribution of humoral immunity and C to myelin destruction. As in multiple sclerosis, mice persistently infected with TMEV had elevated levels of IgG and oligoclonal bands in the cerebrospinal fluid (CSF). Immunoblot studies revealed that even in animals exhibiting profound demyelination, IgG in the serum and CSF was directed primarily at virus antigen rather than at normal myelin components. Inflammatory cells positive for Ig were distributed mainly around blood vessels, but occasionally they infiltrated the spinal cord parenchyma. Rare examples of myelin sheaths positive for IgG were found by immunoelectron microscopy in spinal cord sections from infected mice; the third component of complement (C3) was commonly found in the walls of CNS blood vessels but not on myelin. Neither serum nor CSF IgG from infected mice bound to myelin sheaths or other CNS components in sections of normal syngeneic spinal cord. There were significantly more demyelinating lesions in infected mice depleted of C components with cobra venom factor. These data do not support a humoral autoimmune basis for the CNS demyelination that occurs in association with persistent TMEV infection. However, the humoral immune response directed at TMEV antigens may either limit virus spread or promote virus persistence.  相似文献   

20.
A temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB), ts1, which is defective in intracellular processing of envelope precursor protein (Pr80env), also possesses the ability to induce hind-limb paralysis in infected mice. To investigate whether ts1 has acquired neurotropism and to determine to what extent it can replicate in the central nervous system, we compared viral titers in the spleen, plasma, spinal cord, and brain throughout the course of infection of mice infected with ts1 and parental wild-type (wt) MoMuLV-TB. In both the ts1- and wt-inoculated mice, the concentrations of infectious virus recovered from the plasma and spleen increased rapidly and reached a plateau by 10 days postinfection (p.i.). In contrast, virus concentrations in the spinal cord and brain of ts1-inoculated mice increased gradually and reached a titer comparable to that in the spleen and exceeding that in the plasma only at 25 to 30 days p.i. At this time, the virus titer was approximately 200X greater in ts1-infected spinal cord tissue and approximately 20X greater in ts1-infected brain tissue than in the same wt-infected tissues. Paralysis became evident at 25 to 30 days p.i. in ts1-inoculated mice, whereas the wt-inoculated mice were normal. In addition, a substantial amount of Pr80env was detected in the spinal cords of ts1-inoculated mice compared with that found in the spinal cords of wt-inoculated mice. The infectious virus isolated from ts1-infected nerve tissue was found to possess the characteristic phenotype of the ts1 virus. Microscopic lesions of ts1-inoculated mice at 30 days p.i. consisted of vacuolar degeneration of motor neurons and spongy change of white matter in the brain stem and spinal cord. Similar but less severe lesions were observed in wt-inoculated mice. With primary cultures of central nervous system tissue we showed that ts1 can infect and replicate in both neuron and glial cells. In contrast, although wt MoMuLV-TB replicated in glial cell-rich culture, viral replication was barely detectable in neuron-rich culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号