首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu  Guoqiang  Jin  Xuexia  Guo  Wen  Dou  Wenfang  Zhang  Xiaomei  Xu  Zhenghong 《Annals of microbiology》2015,65(2):929-935
The direct fermentative production of l-serine from renewable biomass using Corynebacterium glutamicum is attracting increasing attention. In this study, wild-type C. glutamicum SYPS-062 produced up to 6.65 ± 0.23 g/L l-serine; to further improve l-serine production, the serA gene was cloned, and the C-terminal domain of 3-phosphoglycerate dehydrogenase (PGDH) from this strain was truncated. When expressed in Escherichia coli, the resultant mutein SerAΔ197 showed a specific PGDH activity of 1.092 ± 0.05 U/mg protein, representing a decrease of 25.87 % from that encoded by serA, and was no longer sensitive to high concentrations of l-serine. When serA Δ591 was overexpressed in C. glutamicum SYPS-062, the activity of PGDH in C. glutamicum pJC1-tac-serA Δ591 increased by 47.72 %, and the resultant strain C. glutamicum pJC1-tac-serA Δ591 could accumulate 7.69 ± 0.22 g/L l-serine. Furthermore, when serA Δ591 was overexpressed in C. glutamicum SYPS-062ΔsdaA, the resultant strain could accumulate 8.84 ± 0.23 g/L l-serine at 102 h, and the yield of l-serine on cells (Y p/x) improved by 60 % when compared with that noted in the control. These results demonstrate that l-serine production in C. glutamicum SYPS-062 could be improved by overexpressing a C-terminal truncation of PGDH in combination with other genetic modifications.  相似文献   

2.
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.  相似文献   

3.
为了获得具有抗反馈抑制性质的大肠杆菌磷酸甘油酸脱氢酶(PGDH, d-3-phosphoglycerate dehydrogenase, EC 1.1.1.95),通过对其碱基序列和蛋白质结构分析,用PCR突变法构建突变酶M1(缺失第410位氨基酸)、M2(缺失407~410位氨基酸)、M3(缺失337~410位氨基酸)。M0(野生型)及各突变型基因与pET22b(+)载体连接后,表达融合蛋白。在非变性条件下,由NTA-Ni镍离子螯合亲和层析柱纯化野生型和突变体的酶蛋白。酶活性测定结果表明,M1、M2蛋白酶均保持了原有的野生型磷酸甘油酸脱氢酶活性,且部分解除了终产物L-丝氨酸的反馈抑制作用;M3蛋白酶完全解除了终产物的反馈抑制作用,但酶本身的催化活性略有降低(为野生型的83%)。M0、M1、M2菌株PGDH与L-丝氨酸结合的Ki值分别约为7 μmol/L、20 μmol/L、50 μmol/L,说明该酶C-末端1~4个氨基酸残基对L-丝氨酸和调控区的结合有重要影响。  相似文献   

4.
以谷氨酸棒杆菌(Corynebacterium glutamicum) SYPS-062基因组DNA为模板,扩增得到L-丝氨酸脱水酶(L-SerDH)的编码基因sdaA。将其克隆到表达载体pET-28a(+),并在E.coli BL21(DE3)中诱导表达,对纯化的L-SerDH进行了酶活测定,并与来自C.glutamicum ATCC13032的重组L-SerDH进行了比较,结果显示,两种不同菌株来源的重组L-SerDH降解L-丝氨酸的酶比活力差异并不显著。在此基础上敲除菌株SYPS-062 的sdaA基因,探讨该基因对C.glutamicum SYPS-062生长及产酸的影响。通过构建自杀型重组质粒pK18mobsacB-△sdaA,电击转入C.glutamicum SYPS-062中,以同源重组的方式获得了sdaA基因缺失突变株,并用PCR方法对突变株C.glutamicum SYPS-062△sdaA进行了验证。与出发菌株相比,突变菌株生长缓慢,单位菌体L-丝氨酸的产量(YP/X)提高了15.13%。  相似文献   

5.
6.
D-3-Phosphoglycerate dehydrogenase (PGDH) from Mycobacterium tuberculosis has been isolated to homogeneity and displays an unusual relationship to the Escherichia coli and mammalian enzymes. In almost all aspects investigated, the M. tuberculosis enzyme shares the characteristics of the mammalian PGDHs. These include an extended C-terminal motif, substrate inhibition kinetics, dependence of activity levels and stability on ionic strength, and the inability to utilize alpha-ketoglutarate as a substrate. The unique property that the M. tuberculosis enzyme shares with E. coli PGDH that it is very sensitive to inhibition by L-serine, with an I(0.5) = 30 microm. The mammalian enzymes are not inhibited by L-serine. In addition, the cooperativity of serine inhibition appears to be modulated by chloride ion, becoming positively cooperative in its presence. This is modulated by the gain of cooperativity in serine binding for the first two effector sites. The basis for the chloride modulation of cooperativity is not known, but the sensitivity to serine inhibition can be explained in terms of certain amino acid residues in critical areas of the structures. The differential sensitivity to serine inhibition by M. tuberculosis and human PGDH may open up interesting possibilities in the treatment of multidrug-resistant tuberculosis.  相似文献   

7.
Placental 15-hydroxy-prostaglandin dehydrogenase (PGDH type I) was measured in 33 placentae obtained from 1 trizygotic, 7 dizygotic and 8 monozygotic pregnancies. PGDH activity ranged from 0.33 to 4.62 nmol PGF2 alpha metabolized per mg placental protein per min, which was within the range observed in singleton pregnancies. Expressing PGDH activity per mg DNA, offered no advantage over expressing it per mg total protein. PGDH activity differed significantly between the placentae of 6 of the 9 genetically non-identical placental pairs. The placentae of genetically identical twins, on the other hand, showed no difference in PGDH activity between the pairs. The data indicate that the genetic constitution of the fetus determines placental PGDH activity. They also provide us with the first evidence that the variation in prostaglandin catabolizing capacity of the human placenta is not entirely dictated by the maternal endocrine environment, but is under fetal control.  相似文献   

8.
Previous attempts to purify chloroplast 6-phosphogluconate dehydrogenase (cp6PGDH), a key enzyme of the oxidative pentose phosphate pathway, have been unsuccessful due to rapid activity loss. An efficient purification protocol was developed and the enzyme from spinach leaves was purified 1000-fold to apparent homogeneity with a specific activity of 60 U.mg-1. The enzyme is a homodimer with subunits of 50 kDa. Antibodies raised against the purified cp6PGDH detected a 53-kDa protein from a crude extract, indicating alterations during purification. Purified cp6PGDH was microsequenced and the corresponding spinach cDNA was cloned using PCR techniques and degenerate primers. The cDNA for cytosolic 6PGDH from spinach was cloned for comparison. Phylogenetic analysis in the context of available homologues from eukaryotes and eubacteria revealed that animal and fungal cytosolic 6PGDH sequences are more similar to their homologues from gamma-proteobacteria, whereas plant 6PGDH is more similar to its cyanobacterial homologues. The ancestral gene for higher plant 6PGDH was acquired from the antecedent of plastids through endosymbiosis and gene transfer to the nucleus. A subsequent gene duplication gave rise to higher plant cytosolic 6PGDH, which assumed the function of its pre-existing cytosolic homologue through endosymbiotic gene replacement. The protein phylogeny of both 6PGDH and of the first enzyme of the oxidative pentose phosphate pathway, glucose-6-phosphate dehydrogenase, indicate a surprisingly close relationship between the plant and Trypanosoma brucei lineages, suggesting that T. brucei (a relative of Euglena gracilis) may be secondarily nonphotosynthetic.  相似文献   

9.
Placental 15-hydroxy-prostaglandin dehydrogenase (PGDH type I) was measured in 33 placentae obtained from 1 trizygotic, 7 dizygotic and 8 monozygotic pregnancies. PGDH activity ranged from 0.33 to 4.62 nmol PGF metabolized per mg placental protein per min, which was within the range observed in singleton pregnancies. Expressing PGDH activity per mg DNA, offered no advantage over expressing it per mg total protein. PGDH activity differed significantly between the placentae of 6 of the 9 genetically non-identical placental pairs. The placentae of genetically identical twins, on the other hand, showed no difference in PGDH activity between the pairs. The data indicate that the genetic constitution of the fetus determines placental PGDH activity. They also provide us with the first evidence that the variation in prostaglandin catabolized capacity of the human placenta is not entirely dictated by the maternal endocrine environment, but is under fetal control.  相似文献   

10.
The specific activity of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was found to increase in the ovaries of pregnant and pseudopregnant rabbits. The mean specific activity of cytosolic ovarian PGDH in 14- to 28-day pregnant rabbits was 24.3 +/- 8.1 nmol NADH formed/min/mg protein (n = 16) using PGE1 as substrate whereas in nonpregnant rabbits the specific activity was 1.5 +/- 0.8 nmol NADH formed/min/mg protein (n = 8). The reaction was dependent on NAD+; NADP+ did not support the reaction. In grouping the PGDH activities from pregnant rabbits into second (14-18 days) and third (2-28 days) trimester periods, no significant difference between values was found (26.1 +/- 8.9 vs 23.4 +/- 8.1 nmol NADH formed/min/mg protein, respectively). Western blot analysis of the ovarian cytosol using an antibody which was made to the purified lung PGDH of pregnant rabbits recognized an ovarian protein of identical molecular mass (30 kDa). Ovarian PGDH activities were also examined in rabbits treated with pregnant mare's serum gonadotrophin (PMSG) and human chorionic gonadotrophin (hCG) to induce a state of superovulatory/pseudopregnancy and only on day 11 following hCG treatment was an increase in PGDH specific activity observed. On day 11, the specific activity was 14.8 +/- 4.3 nmol NADH formed/min/mg protein whereas values on days 10 and 12 were only 1.1 +/- 1.1 and 1.0 +/- 0.8, respectively. PGDH activities on days 3, 7 and 16 were also low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A polyclonal antibody was produced in guinea pig against the lung NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) purified from pregnant rabbits. Western blot analysis demonstrated that the protein identified by this antibody in the 105,000g supernatant fraction of lung tissue from pregnant rabbits had a molecular mass of 30 kDa and comigrated with the purified PGDH. The specific activity of the lung PGDH in pregnant rabbits (25- to 28-day gestations) was 36.7 nmol NADH formed/min/mg protein compared to 0.3 nmol NADH formed/min/mg protein in nonpregnant rabbits. Although the PGDH activity in the lung cytosol of nonpregnant rabbits was inhibited by the anti-lung PGDH antibody, the 30-kDa protein was not detected by Western blot analysis. An examination of this 30-kDa protein during the gestational period indicated that the protein was present after 10 days and the amount of the protein increased from Day 10 to Day 28. This increase in the immunochemically reactive protein correlated with the marked increase in PGDH specific activity between 10 and 28 days. An immunochemically reactive protein also was observed in the ovary of 25- to 28-day pregnant rabbits and the specific activity of the ovary PGDH was 19.3 nmol NADH formed/min/mg protein. Only trace levels of the PGDH activity were detected in the ovaries of nonpregnant rabbits. A 30-kDa protein was not detected by the anti-rabbit lung PGDH in brain, kidney, bladder, uterus, liver, and heart tissue of pregnant or nonpregnant rabbits. When rabbit or human placental cytosol was examined with the anti-rabbit lung PGDH only faint 30-kDa bands were observed by Western blot analysis. A monoclonal antibody prepared against human placental PGDH did not recognize the 30-kDa band in the pregnant rabbit lung. Localization studies indicated a marked increase in immunochemical staining in pulmonary epithelial cells of pregnant rabbits as compared to nonpregnant rabbits. Lung epithelial cells but not endothelial cells were identified as containing the PGDH.  相似文献   

12.
In the wild-type of Corynebacterium glutamicum, the specific activity of glutamate dehydrogenase (GDH) remained constant at 1.3 U (mg protein)–1 when raising the ammonia (NH4) concentration in the growth medium from 1 to 90 mM. In contrast, the glutamine synthetase (GS) and glutamate synthase (GOGAT) activities decreased from 1.1 U (mg protein)–1 and 42 mU (mg protein)–1, respectively, to less than 10 % of these values at NH4 concentrations > 10 mM suggesting that under these conditions the GDH reaction is the primary NH4 assimilation pathway. Consistent with this suggestion, a GDH-deficient C. glutamicum mutant showed slower growth at NH4 concentrations 10 mM and, in contrast to the wild-type, did not grow in the presence of the GS inhibitor methionine sulfoximine. © Rapid Science Ltd. 1998  相似文献   

13.
15-羟基前列腺素脱氢酶(PGDH)属于抑癌基因,在多种肿瘤中表达缺失,在肿瘤的发生发展中起着重要作用。提取人正常大肠黏膜组织总RNA,利用RT-PCR方法扩增得到PGDH基因的编码序列,克隆入原核表达载体pBV220,测序鉴定正确后转化E.coli DH5α,经温控诱导表达,表达产物进行SDS-PAGE和Western blot,证实为相对分子质量约为29000的PGDH-His6蛋白,表达产物以包涵体形式存在,3h诱导表达量最高,约占菌体总蛋白的30%。经Ni2+配体亲和层析纯化得到纯度大于95%的目的蛋白。重组PGDH简单复性后具有一定的生物活性,约为3.7×104U/mg,为下一步研究其在肿瘤中的作用奠定了基础。  相似文献   

14.
NADPH oxidase activity, in addition to NADH oxidase activity, has been shown to be present in the respiratory chain of Corynebacterium glutamicum. In this study, we tried to purify NADPH oxidase and NADH dehydrogenase activities from the membranes of C. glutamicum. Both the enzyme activities were simultaneously purified in the same fraction, and the purified enzyme was shown to be a single polypeptide of 55 kDa. The N-terminal sequence of the enzyme was consistent with the sequence deduced from the NADH dehydrogenase gene of C. glutamicum, which has been sequenced and shown to be a homolog of NADH dehydrogenase II. In addition to high NADH-ubiquinone-1 oxidoreductase activity at neutral pH, the purified enzyme showed relatively high NADPH oxidase and NADPH-ubiquinone-1 oxidoreductase activities at acidic pH. Thus, NADH dehydrogenase of C. glutamicum was shown to be rather unique in having a relatively high reactivity toward NADPH.  相似文献   

15.
The amino acid L-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of L-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on Ptac and lacIQ are unstable, acquiring mutations in lacIQ, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum DeltasdaA strain (pserACB) accumulates only traces of L-serine, with the C. glutamicum DeltapabABCDeltasdaA strain (pserACB), L-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM L-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM L-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available.  相似文献   

16.
Aichi virus, a member of the family Picornaviridae, encodes a leader (L) protein of 170 amino acids (aa). The Aichi virus L protein exhibits no significant sequence homology to those of other picornaviruses. In this study, we investigated the function of the Aichi virus L protein in virus growth. In vitro translation and cleavage assays indicated that the L protein has no autocatalytic activity and is not involved in polyprotein cleavage. The L-VP0 junction was cleaved by 3C proteinase. Immunoblot analysis showed that the L protein is stably present in infected cells. Characterization of various L mutants derived from an infectious cDNA clone revealed that deletion of 93 aa of the center part (aa 43 to 135), 50 aa of the N-terminal part (aa 4 to 53), or 90 aa of the C-terminal part (aa 74 to 163) abolished viral RNA replication. A mutant (Delta114-163) in which 50 aa of the C-terminal part (aa 114 to 163) were deleted exhibited efficient RNA replication and translation abilities, but the virus yield was 4 log orders lower than that of the wild type. Sedimentation analysis of viral particles generated in mutant Delta114-163 RNA-transfected cells showed that the mutant has a severe defect in the formation of mature virions, but not in that of empty capsids. Thus, the data obtained in this study indicate that the Aichi virus L protein is involved in both viral RNA replication and encapsidation.  相似文献   

17.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

18.
The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of approximately 155 kDa. The catalytic activity of the enzyme increases up to 100 degrees C, and a half-life of 11 min at this temperature indicates its thermostability. The enzyme is specific for NAD(H), and maximal specific activities were detected with L-threonine (10.3 U x mg(-1)) and acetoin (3.9 U x mg(-1)) in the oxidative and reductive reactions, respectively. Pf-TDH also utilizes L-serine and D-threonine as substrate, but could not oxidize other L-amino acids. The enzyme requires bivalent cations such as Zn2+ and Co2+ for activity and contains at least one zinc atom per subunit. Km values for L-threonine and NAD+ at 70 degrees C were 1.5 mm and 0.055 mm, respectively.  相似文献   

19.
IS421, a new insertion sequence in Escherichia coli   总被引:2,自引:0,他引:2  
The nucleotide sequence of a new insertion sequence (IS) in Escherichia coli, IS421, was determined. It is 1340 bp long and contains inverted repeats of 22 bp at its termini. It is flanked by 13 bp direct repeats apparently generated upon insertion. There are two ORFs longer than 200 bp in IS421. One can encode a polypeptide of 371 amino acids (aa) and the other, which is on the other strand, can encode a polypeptide of 102 aa. The C-terminal part of the 371 aa polypeptide shows some homology to that of transposases encoded in some other known IS elements. The copy number of IS421 in chromosomal DNA was 4 for E. coli K-12 and B, and 5 for E. coli C, as determined by the Southern hybridization of restriction fragments.  相似文献   

20.
Pyruvate kinase activity is an important element in the flux control of the intermediate metabolism. The purified enzyme from Corynebacterium glutamicum demonstrated a marked sigmoidal dependence of the initial rate on the phosphoenolpyruvate concentration. In the presence of the negative allosteric effector ATP, the phosphoenolpyruvate concentration at the half-maximum rate (S0.5) increased from 1.2 to 2.8 mM, and cooperation, as expressed by the Hill coefficient, increased from 2.0 to 3.2. AMP promoted opposite effects: the S0.5 was decreased to 0.4 mM, and the enzyme exhibited almost no cooperation. The maximum reaction rate was 702 U/mg, which corresponded to an apparent kcat of 2,540 s-1. The enzyme was not influenced by fructose-1,6-diphosphate and used Mn2+ or Co2+ as cations. Sequence determination of the C. glutamicum pyk gene revealed an open reading frame coding for a polypeptide of 475 amino acids. From this information and the molecular mass of the native protein, it follows that the pyruvate kinase is a tetramer of 236 kDa. Comparison of the deduced polypeptide sequence with the sequences of other bacterial pyruvate kinases showed 39 to 44% homology, with some regions being very strongly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号