首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sulfhydryl groups are involved in the interaction of FSH with its receptor   总被引:1,自引:0,他引:1  
FSH has recently been reported to possess thioredoxin-like activity, presumably explained by the homology between a region of FSH-beta subunit and the active site of thioredoxin. The homologous sequence lies within a receptor binding region, which suggests a possible role for sulfhydryl groups in the formation of an active hormone-receptor complex and subsequent signal transduction. In order to determine the relevance of sulfhydryl groups on FSH-receptor interaction, we studied the effect of N-ethylmaleimide (NEM) and glutathione on FSH binding. The results indicate that free sulfhydryl groups, probably derived from the FSH receptor, are involved in ligand-receptor interaction.  相似文献   

3.
The role of FSH in gonadal tumorigenesis and, in particular, in human ovarian cancer has been debated. It is also unclear what role the elevated FSH levels in the inhibin-deficient mouse play in the gonadal tumorigenesis. To directly assess the role of FSH in gonadal growth, differentiation, and gonadal tumorigenesis, we have generated both gain-of-function and loss-of-function transgenic mutant mice. In the gain-of-function model, we have generated transgenic mice that ectopically overexpress human FSH from multiple tissues using a mouse metallothionein-1 promoter, achieving levels far exceeding those seen in postmenopausal women. Male transgenic mice are infertile despite normal testicular development and demonstrate enlarged seminal vesicles secondary to elevated serum testosterone levels. Female transgenic mice develop highly hemorrhagic and cystic ovaries, have elevated serum estradiol and progesterone levels, and are infertile, mimicking the features of human ovarian hyperstimulation and polycystic ovarian syndromes. Furthermore, the female transgenic mice develop enlarged and cystic kidneys and die between 6-13 weeks as a result of urinary bladder obstruction. In a complementary loss-of-function approach, we have generated double-homozygous mutant mice that lack both inhibin and FSH by a genetic intercross. In contrast to male mice lacking inhibin alone, 95% of which die of a cancer cachexia-like syndrome by 12 weeks of age, only 30% of the double-mutant male mice lacking both FSH and inhibin die by 1 yr of age. The remaining double-mutant male mice develop slow-growing and less hemorrhagic testicular tumors, which are noted after 12 weeks of age, and have minimal cachexia. Similarly, the double-mutant female mice develop slow-growing, less hemorrhagic ovarian tumors, and 70% of these mice live beyond 17 weeks. The double-mutant mice demonstrate minimal cachexia in contrast to female mice lacking only inhibin, which develop highly hemorrhagic ovarian tumors, leading to cachexia and death by 17 weeks of age in 95% of the cases. The milder cachexia-like symptoms of the inhibin and FSH double-mutant mice are correlated with low levels of serum estradiol and activin A and reduced levels of aromatase mRNA in the gonadal tumors. Based on these and our previous genetic analyses, we conclude that elevated FSH levels do not directly cause gonadal tumors. However, these results suggest FSH is an important trophic modifier factor for gonadal tumorigenesis in inhibin-deficient mice.  相似文献   

4.
Progesterone (P) biphasically modulates follicle-stimulating hormone (FSH) secretion in the rat both in vivo and in vitro with the duration of estrogen priming determining the biphasic nature of the P action, probably through estrogen up-regulation of the anterior pituitary progesterone receptor (PR) levels. P has been also shown to regulate anterior pituitary levels of FSH-beta mRNA in the rat. Although the mechanism of this action has not been determined, steroids may regulate gene expression through the binding of liganded receptors to gene sequences known as hormone response elements (HRE); however, it is not known whether HRE's exist on the rat FSH-beta gene. We have localized a series of progesterone response elements (PRE)-like sequences on the rat FSH-beta gene and have begun testing the hypothesis that P modulates the expression of the rat FSH-beta gene through the direct binding of the P/PR complex to these PRE-like sequences. Electromobility shift assays indicate that these PRE-like sequences bind PR with high affinity and specificity. In addition, when a 361-base pair sequence, which contains the three PRE-like sequences localized in the upstream region of the gene, was cloned into a luciferase expression vector driven by a heterologous promoter and transiently transfected into anterior pituitary cell cultures, progestin stimulation elicited increased luciferase expression. These results indicated that the 361-base pair sequence conferred P-responsiveness to a heterologous promoter. The data further suggest that FSH synthesis in the rat is modulated by direct binding of PR to PRE-like sequences.  相似文献   

5.
The estrogen receptor-beta (ERbeta) mediates estrogen action in the female gonads, reproductive tract, and central nervous system. In addition, in rats and mice, gonadotropin-releasing hormone (GnRH-I) neurons coexpress ERbeta. Here we asked if ERbeta plays a role in the onset of puberty and in hypothalamic-pituitary-gonadal (HPG) axis function in male mice. We examined mating behavior, testosterone concentrations, steroid negative feedback on gonadotropins, and GnRH-I function in male ERbeta knockout (ERbetaKO) and wild-type (WT) mice. Peripubertal ERbetaKO males displayed their first ejaculation at a significantly older age than WT littermates. Castrated, adult ERbetaKO mice had significantly higher plasma luteinizing hormone (LH) than WT counterparts. Estradiol (E2) treatment reduced LH and follicle stimulating hormone (FSH) concentrations to an equivalent degree in castrates of both genotypes. In three different measures of the adult GnRH-I system, no genotypic differences were observed. These data show that ERbeta plays an important role in the timing of male sexual behavior at puberty, but does not appear to be involved in adult HPG axis functioning. Furthermore, our data suggest that a primary role of ERbeta may be to regulate ejaculatory behavior.  相似文献   

6.
We have previously shown that hFSH-beta 34-37 (KTCT) and 49-52 (TRDL) inhibit binding of 125I-hFSH to FSH receptor in calf testis membranes and that hFSH-beta 33-53, which encompasses these tetrapeptides, inhibits binding with increased potency. hFSH-beta 33-53 rapidly dimerizes under conditions utilized in the receptor binding assay (pH 7.5) so that the binding inhibition reported earlier was due to the hFSH-beta 33-53 dimer rather than the monomer. At pH 6.5, conversion to dimer does not occur, and binding inhibition could be unequivocally attributed to the monomer. Radioiodinated and alkylated hFSH-beta 33-53 binds to the FSH receptor with a Kd = (5.5 +/- 1.4) X 10(-5) M. The biological activity of hFSH-beta 33-53 was assessed by its ability to affect the conversion of androstenedione to estradiol in rat Sertoli cells cultures. FSH-beta 33-53 behaved as a partial antagonist of the FSH-induced estradiol synthesis. The required incubation medium, however, contains cystine as well as cystine, which rapidly forms a hFSH-beta Cys-(51)-S-S-Cys derivative at the pH of the incubation, 7.4. When hFSH-beta 33-53 was converted either to the hFSH-beta Cys(51)-S-S-Cys or to a carboxymethylated derivative, inhibition of FSH-induced estradiol synthesis still was observed. This result demonstrates that the free R-SH group at Cys51 is not responsible for the inhibition. FSH-beta 33-53 also significantly stimulated basal levels of estradiol synthesis, but not to maximal levels observed with FSH (partial agonist). Neither the carbohydrate content of hFSH-beta nor the alpha subunit of FSH appears to be essential for signal transduction and expression of the hormone effect of FSH-beta 33-53.  相似文献   

7.
The Wip1 gene is a serine/threonine phosphatase that is induced in a p53-dependent manner by DNA-damaging agents. We show here that Wip1 message is expressed in moderate levels in all organs, but is present at very high levels in the testes, particularly in the postmeiotic round spermatid compartment of the seminiferous tubules. We have confirmed that Wip1 mRNA is induced by ionizing radiation in mouse tissues in a p53-dependent manner. To further determine the normal biological function of Wip1 in mammalian organisms, we have generated Wip1-deficient mice. Wip1 null mice are viable but show a variety of postnatal abnormalities, including variable male runting, male reproductive organ atrophy, reduced male fertility, and reduced male longevity. Mice lacking Wip1 show increased susceptibility to pathogens and diminished T- and B-cell function. Fibroblasts derived from Wip1 null embryos have decreased proliferation rates and appear to be compromised in entering mitosis. The data are consistent with an important role for Wip1 in spermatogenesis, lymphoid cell function, and cell cycle regulation.  相似文献   

8.
FSH directly regulates bone mass   总被引:21,自引:0,他引:21  
Postmenopausal osteoporosis, a global public health problem, has for decades been attributed solely to declining estrogen levels. Although FSH levels rise sharply in parallel, a direct effect of FSH on the skeleton has never been explored. We show that FSH is required for hypogonadal bone loss. Neither FSHbeta nor FSH receptor (FSHR) null mice have bone loss despite severe hypogonadism. Bone mass is increased and osteoclastic resorption is decreased in haploinsufficient FSHbeta+/- mice with normal ovarian function, suggesting that the skeletal action of FSH is estrogen independent. Osteoclasts and their precursors possess G(i2alpha)-coupled FSHRs that activate MEK/Erk, NF-kappaB, and Akt to result in enhanced osteoclast formation and function. We suggest that high circulating FSH causes hypogonadal bone loss.  相似文献   

9.
Andrzej Bartke 《Aging cell》2017,16(5):916-917
It was recently reported that the extragonadal actions of follicle‐stimulating hormone (FSH) include regulation of brown and white adipose tissue function and thermogenesis. Based on these findings and on our evidence for reduced FSH levels and enhanced thermogenesis in long‐lived growth hormone (GH)‐deficient mice and GH‐resistant mice, we suggest that FSH may have a role in the control of aging and longevity. We speculate that alterations in FSH secretion may represent one of the mechanisms of trade‐offs between reproduction and aging.  相似文献   

10.
The follicle-stimulating hormone is one of the two pituitary hormones that control fertility in both sexes. In the male, receptors for FSH (FSHR) are only expressed on testicular Sertoli cells. FSH plays different roles during the male life; it functions as a growth factor during development and sustains spermatogenesis in adults. However, the exact role of this hormone as an initiator of male fertility is not fully understood and few data are available concerning its involvement during the peripubertal period. We recently produced filamentous phages displaying FSHR fragments overlapping residues 18-38, which, if injected in animals, induced anti-FSH receptor immunity capable of inhibiting hormone binding. We employed this strategy to transiently inhibit FSH activity in male mice and male goats of the Saanen and the Mongolian Alpas Cashmere breeds at the prepubertal stage. Anti-FSHR peptide immunization from the age of 3 wk delayed the acquisition of fecundity in male mice by up to 1 wk. Once fertile, progeny sizes produced by mating immunized males and untreated females were found to be reduced by up to 60%. In two different breeds of goats, FSHR peptide vaccines were able to maintain circulating testosterone at low prepubertal levels for several months despite no alteration in LH levels, reflecting their ability to delay the onset of puberty. These results support the conclusion that FSH may play a central role in the male at puberty through the control of testosterone production.  相似文献   

11.
12.
In recent years, host cell caveolae/caveolins have emerged as potentially important targets for pathogenic microorganisms; therefore, we investigated the role of caveolin-1 (Cav-1) in T. cruzi infection using Cav-1 null mice. Cav-1 null and wild type mice were infected with the virulent Tulahuen strain. The mortality was 100% in both groups, but death was slightly delayed in wild type mice. The parasitemia in the Cav-1 null mice was significantly reduced compared with wild type littermates. Histopathologic examination of the heart revealed numerous pseudocysts, myonecrosis, and marked inflammation, which was similar in both mouse groups. Real-time PCR confirmed these observations. Infection of cultured cardiac fibroblasts obtained from Cav-1 null and wild type mice revealed no differences in infectivity. Determination of serum levels of several inflammatory mediators revealed a striking reduction in IFN-gamma, TNF-alpha and components of the nitric oxide pathway in infected Cav-1 null mice. Infection of wild type mice resulted in the expected enhancement of inflammatory mediators. The defective production of chemokines and cytokines observed in vivo is in part attributed to Cav-1 null macrophages. Despite these marked differences in the response to infection by inflammatory mediators between the two mouse strains, the final outcome was similar. These results suggest that Cav-1 may play an important role in the normal development of immune responses.  相似文献   

13.
Follistatin plays an important role in female physiology by regulating FSH levels through blocking activin actions. Failure to regulate FSH has been implicated as a potential cause of premature ovarian failure. Premature ovarian failure is characterized by amenorrhea, infertility, and elevated gonadotropin levels in women under the age of 40. Because follistatin is essential for postnatal viability, we designed a cre/loxP conditional knockout system to render the follistatin gene null specifically in the granulosa cells of the postnatal ovary using Amhr2cre transgenic mice. The follistatin conditional knockout females develop fertility defects, including reduced litter number and litter sizes and, in the most severe case, infertility. Reduced numbers of ovarian follicles, ovulation and fertilization defects, elevated levels of serum FSH and LH, and reduced levels of testosterone were observed in these mice. These findings demonstrate that compromising granulosa cell follistatin function leads to findings similar to those characterized in premature ovarian failure. Follistatin conditional knockouts may therefore be a useful model with which to further study this human syndrome. These studies are the first report of a granulosa cell-specific deletion of a gene in the postnatal ovary and have important implications for future endeavors to generate ovary-specific knockout mouse models.  相似文献   

14.
We previously reported that global deletion of insulin receptor substrate protein 1 (Irs1) extends lifespan and increases resistance to several age-related pathologies in female mice. However, no effect on lifespan was observed in male Irs1 null mice. We suggested at the time that the lack of any effect in males might have been due to a sample size issue. While such lifespan studies are essential to our understanding of the aging process, they are generally based on survival curves derived from single experiments, primarily due to time and economic constraints. Consequently, the robustness of such findings as a basis for further investigation has been questioned. We have therefore measured lifespan in a second, separate cohort of Irs1 null female mice, and show that, consistent with our previous finding, global deletion of Irs1 significantly extends lifespan in female mice. In addition, an augmented and completed study demonstrates lifespan extension in male Irs1 null mice. Therefore, we show that reduced IRS1-dependent signalling is a robust mechanism through which mammalian lifespan can be modulated.  相似文献   

15.
Interleukin (IL)-18 is a cardiotropic proinflammatory cytokine chronically elevated in the serum of patients with cardiac hypertrophy (LVH). The purpose of this study was to examine the role of IL-18 in pressure-overload hypertrophy using wild type (WT) and IL-18 -/- (null) mice. Adult male C57Bl/6 mice underwent transaortic constriction (TAC) for 7days or sham surgery. Heart weight/body weight ratios showed blunted hypertrophy in IL-18 null TAC mice compared to WT TAC animals. Microarray analyses indicated differential expression of hypertrophy-related genes in WT versus IL-18 nulls. Northern, Western, and EMSA analyses showed Akt and GATA4 were increased in WT but unchanged in IL-18 null mice. Our results demonstrate blunted hypertrophy with reduced expression of contractile-, hypertrophy-, and remodeling-associated genes following pressure overload in IL-18 null mice, and suggest that IL-18 plays a critical role in the hypertrophic response.  相似文献   

16.
Peroxisome proliferator-activated receptor (PPAR) gamma activation has been implicated in the prevention of immunoinflammatory disorders; however, the mechanisms of regulation of effector and regulatory CD4+ T cell functions by endogenously activated PPAR-gamma remain unclear. We have used PPAR-gamma-deficient CD4+ T cells obtained from tissue-specific PPAR-gamma null mice (i.e., PPAR-gamma fl/fl; MMTV-Cre+) to investigate the role of endogenous PPAR-gamma on regulatory T cell (Treg) and effector CD4+ T cell function. Overall, we show that the loss of PPAR-gamma results in enhanced Ag-specific proliferation and overproduction of IFN-gamma in response to IL-12. These findings correlate in vivo with enhanced susceptibility of tissue-specific PPAR-gamma null mice to trinitrobenzene sulfonic acid-induced colitis. Furthermore, the transfer of purified PPAR-gamma null CD4+ T cells into SCID recipients results in enteric disease. To test the assertion that the deficiency of PPAR-gamma in Treg impairs their ability to prevent effector T cell-induced colitis, we performed cotransfer studies. These studies demonstrate that PPAR-gamma-expressing, but not PPAR-gamma null Treg, prevent colitis induced by transfer of naive CD4+ T cells into SCID recipients. In line with these findings, the production of IFN-gamma by spleen and mesenteric lymph node-derived CD4+ T cells was down-regulated following transfer of PPAR-gamma-expressing, but not PPAR-gamma null, Treg. In conclusion, our data suggest that endogenous PPAR-gamma activation represents a Treg intrinsic mechanism of down-regulation of effector CD4+ T cell function and prevention of colitis.  相似文献   

17.
Exogenous regulation of protein expression creates the potential to examine the consequences of homeostatic Dysregulation in many physiological systems and, when used in transgenic mice, provides the capability of restoring a gene product to its knockout background without antigenicity issues. In this study, we used a mifeprisone-inducible system (the GeneSwitch system) to regulate the expression of inhibin A from the liver of mice. Inhibin is a heterodimeric protein (alpha/beta) wherein one of its subunits (beta) is capable of homodimerizing to form its physiological antagonist, activin (beta/beta). Inhibin is also expressed in two forms, A and B, as determined by the subtype of beta-subunit that dimerizes with the alpha-subunit (alpha/betaA or alpha/betaB). To utilize the GeneSwitch system, transgenic transactivator mice with liver-specific expression of a mifepristone-activated chimeric nuclear receptor (GLVP) were crossed with transgenic target mice containing a GVLP-responsive promoter upstream of polio-virus IRES (internal ribosome entry site)-linked sequences coding for the alpha- and beta-subunits of inhibin A. This intercross produced "bigenic" mice capable of regulable expression of inhibin A from the liver. Overexpression of inhibin A in wild-type mice produced a phenotype wherein males had decreased testis size and females had a block in folliculogenesis at the early antral stage, findings similar to activin type IIA receptor (ActRIIA) null mice. These phenotypes were most likely due to suppressed serum FSH, confirming that the liver-derived inhibin A was secreted into the serum to down-regulate pituitary FSH levels. Furthermore, the generation of bigenic mice in the inhibin alpha null background allowed for the induction of inhibin A in inhibin alpha null male mice with subsequent rescue of these mice from their gonadal tumor-induced lethal phenotype. This work demonstrates the in vivo production of a heterodimeric hormone from a single inducible promoter to study its therapeutic and physiological effects. In addition, these studies are the first example of an inducible system being used to prevent a lethal knockout phenotype in an animal model.  相似文献   

18.
19.
The role of dynorphin/kappa opioid receptors in epilepsy and addiction are well accepted, but their function in emotional control is not yet fully understood. Data obtained from different strains of prodynorphin (Pdyn)- and kappa opioid receptor (KOP)-deficient mice do not provide a consistent picture of the functions of Dyn/KOP in anxiety, suggesting the influence of testing conditions and/or genetic background. Therefore, we investigated the behaviour and neurochemistry of male and female Pdyn KO mice on the balb/c and C57Bl/6N background. Consistent with our results obtained from male mice on the C57bl/6N background, we observed a less anxious phenotype in the elevated plus maze, open-field and light-dark test in male mice on the balb/c background. Female mice on the balb/c background also displayed less anxiety like behaviour; however these data reflect high trait anxiety and inter-individual differences. In contrast, female mice on the C57Bl/6N background displayed low trait anxiety and a paradigm-dependent reduction of anxiety. No differences were observed in the forced swim test, while balb/c Pdyn KO mice displayed prolonged immobility in the tail suspension test. In line with our previous results, we observed reduced CRH mRNA in the central amygdala in all groups of mice. In contrast, the recently observed CRH mRNA reduction in the hypothalamic paraventricular nucleus appears restricted to male, but not female mice. Our data support previous data suggesting a pronounced impact of endogenous prodynorphin-derived peptides on anxiety. Moreover, our data support the idea that the less anxious phenotype manifests only at elevated stress levels.  相似文献   

20.
LHRH-stimulated LH and FSH secretion was studied in hemipituitaries, in vitro, obtained from several dystrophic mouse mutants (male: 129/ReJ-dy; 129B6F1/J-dy; C57BL/6J-dy and C57BL/6J-dy2J; female: 129B6F1/J-dy) and a dystrophic hamster mutant (male and female CHF-147). Without exception, pituitary tissue from dystrophic animals released significantly more FSH than did tissue obtained from controls. LH secretion was more variable; in the male mice released was inhibited, whereas in the male dystrophic hamsters secretion was elevated above normal. The female mouse mutant pituitary released more LH whereas in the female hamster LH secretion was normal. The reduction in body weight of the mutants studied could have contributed to the observations of impaired anterior pituitary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号