首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trk1(+) gene has been proposed as a component of the K(+) influx system in the fission yeast Schizosaccharomyces pombe. Previous work from our laboratories revealed that trk1 mutants do not show significantly altered content or influx of K(+), although they are more sensitive to Na(+). Genome database searches revealed that S. pombe encodes a putative gene (designated here trk2(+)) that shows significant identity to trk1(+). We have analyzed the characteristics of potassium influx in S. pombe by using trk1 trk2 mutants. Unlike budding yeast, fission yeast displays a biphasic transport kinetics. trk2 mutants do not show altered K(+) transport and exhibit only a slightly reduced Na(+) tolerance. However, trk1 trk2 double mutants fail to grow at low K(+) concentrations and show a dramatic decrease in Rb(+) influx, as a result of loss of the high-affinity transport component. Furthermore, trk1 trk2 cells are very sensitive to Na(+), as would be expected for a strain showing defective potassium transport. When trk1 trk2 cells are maintained in K(+)-free medium, the potassium content remains higher than that of the wild type or trk single mutants. In addition, the trk1 trk2 strain displays increased sensitivity to hygromycin B. These results are consistent with a hyperpolarized state of the plasma membrane. An additional phenotype of cells lacking both Trk components is a failure to grow at acidic pH. In conclusion, the Trk1 and Trk2 proteins define the major K(+) transport system in fission yeast, and in contrast to what is known for budding yeast, the presence of any of these two proteins is sufficient to allow growth at normal potassium levels.  相似文献   

2.
We describe a technique which permits an easy screening for amber mutants defective in essential genes of Escherichia coli. Using this approach, we have isolated three amber mutants defective in the rho gene. An extension of the technique allows the detection of ochre mutants and transposon insertions in essential genes.  相似文献   

3.
A novel method has been developed to easily isolate the mutants with high lipid yield after irradiating oleaginous yeast cells with carbon ions of energy of 80 MeV/u. Pre-selection of the mutants after ion irradiation was performed with culture medium in which the concentration of cerulenin, a potent inhibitor of fatty acid synthetase, was at 8.96 μmol/l. Afterwards, lipid concentration in the fermentation broth of the pre-selected colonies was estimated by the sulfo-phospho-vanillin reaction instead of the conventional methanol–chloroform extraction. Two mutants with high lipid yield have been successfully selected out by the combined method. This easy and simple method is much less time-consuming but very efficient in the mutant isolation, and it has demonstrated great potential on mutation breeding in oleaginous microorganism. This work was supported by the “Western Light” Program of Talent Cultivation of Chinese Academy of Sciences (O606180XBO).  相似文献   

4.
Previously known cell size (wee) mutations of fission yeast suppress the mitotic block caused by a defective cdc25 allele. Some 700 revertants of cdc25-22 were obtained after ultraviolet mutagenesis and selection at the restrictive temperature. Most revertants carried the original cdc25 lesion plus a mutation in or very close to the wee1 gene. Two partial wee1 mutations of a new type were found among the revertants. Two new wee mutations mapping at the cdc2 gene (cdc2-w mutants) were also obtained. The various mutations were examined for their effects on cell division size, their efficiency as cdc25 suppressors, and their dominance relations. Full wee1 mutations were found to suppress cdc25 lesions very efficiently, whereas partial wee1 mutations were poor suppressors. The cdc25 suppression ability of cdc2-w mutations was allele specific for cdc2, suggesting bifunctionality of the gene product. The wee1 mutations were recessive for cdc25 suppression; cdc2-w mutations were dominant. A model is proposed for the genetic control of mitotic timing and cell division size, in which the cdc2+ product is needed and is rate limiting for mitosis. The cdc2+ activity is inhibited by the wee1+ product, whereas the cdc25+ product relieves this inhibition.  相似文献   

5.
6.
The fission yeast dsk1+ gene, a multicopy suppressor for cold-sensitive dis1 mutants, encodes a novel 61-kd protein kinase. It is a phosphoprotein, and phosphoserine is the major phosphorylated amino acid. Hyperphosphorylation of dsk1 causes a mobility shift, resulting in two dsk1-specific protein bands. The phosphorylation pattern is strikingly altered when cell cycle progression is delayed or arrested. The slowly migrating phosphorylated form is prominent in mitotically arrested cells, and the fast migrating form is enriched in interphase-arrested cells. dsk1 is a protein kinase. It auto-phosphorylates as well as phosphorylates myelin basic protein (MBP). Phosphotyrosine as well as phosphoserine/threonine were found in autophosphorylation, but no tyrosine phosphorylation occurs when MBP was used as the substrate. The dsk1 immunoprecipitates from mitotically arrested cells have a several-fold higher kinase activity than that from wild type. The haploid gene disruptant is viable, indicating that the dsk1+ gene is non-essential for viability. High dosage of dsk1+, however, strongly delays the G2/M progression. Immunofluorescence microscopy using anti-dsk1 antibody shows that localization pattern of dsk1 protein strikingly alters depending on cell cycle stages. In G2-arrested cells, dsk1 locates in the cytoplasm, whereas in mitotically arrested cells, nuclear stain is intense. In wild-type cells, nuclear stain is seen only in mitotic cells. Hence dsk1 protein may play an important role in mitotic control by altering cellular location, degree of phosphorylation and kinase activity. We discuss possible roles of dsk1 kinase as an add-on regulator in mitosis.  相似文献   

7.
The technologies for chromosome modification developed to date are not satisfactorily universal, owing to the typical requirements for special enzymes and sequences. In the present report, we propose a new approach for chromosome modification in Schizosaccharomyces pombe that does not involve any special enzymes or sequences. This method, designated the ‘Latour system’, has wide applicability with extremely high efficiency, although both the basic principle and the operation are very simple. We demonstrate the ability of the Latour system to discriminate essential genes, with a long chromosomal area of 100 kb containing 33 genes deleted simultaneously and efficiently. Since no foreign sequences are retained after deletion using the Latour system, this system can be repeatedly applied at other sites. Provided that a negative selectable marker is available, the Latour system relies solely upon homologous recombination, which is highly conserved in living organisms. For this reason, it is expected that the system will be applicable to various yeasts.  相似文献   

8.
Summary The mutational activity of NIL and HNO2 is compared in a forward mutation system of Saccharomyces cerevisiae involving ad1 and ad2 loci. The comparison includes the distribution of ad1 to ad2 mutations as well as certain functional aspects, namely, the frequency of KCl remedials and intragenic complementation with the tester strains. The results show that NIL and HNO2 mutants are similar both in the distribution of ad1 to ad2 and in their functional aspects. Our findings suggest, furthermore, that in a certain group of mutants—mutants complementing with the tester strains—complementation is incompatible with KCl repair.  相似文献   

9.
Deletion of the fission yeast mitotic B-type cyclin gene cdc13 causes cells to undergo successive rounds of DNA replication. We have used a strain which expresses cdc13 conditionally to investigate re-replication. Activity of Start genes cdc2 and cdc10 is necessary and p34cdc2 kinase is active in re-replicating cells. We tested to see whether other cyclins were required for re-replication using cdc13delta. Further deletion of cig1 and puc1 had no effect, but deletion of cig2/cyc17 caused a severe delay in re-replication. Deletion of cig1 and cig2/cyc17 together abolished re-replication completely and cells arrested in G1. This, and analysis of the temperature sensitive cdc13-117 mutant, suggests that cdc13 can effectively substitute for the G1 cyclin activity of cig2/cyc17. We have characterized p56cdc13 activity and find evidence that in the absence of G1 cyclins, S-phase is delayed until the mitotic p34cdc2-p56cdc13 kinase is sufficiently active. These data suggest that a single oscillation of p34cdc2 kinase activity provided by a single B-type cyclin can promote ordered progression into both DNA replication and mitosis, and that the level of cyclin-dependent kinase activity may act as a master regulator dictating whether cells undergo S-phase or mitosis.  相似文献   

10.
11.
In fission yeast, the conserved proteins, MO25/Pmo25, GC kinase/Nak1, Furry/Mor2, NDR kinase/Orb6, and Mob2, constitute the morphogenesis Orb6 network (MOR). Previously we showed that Pmo25 functions as an upstream component of MOR and that it plays a connecting role between the septation initiation network (SIN) and MOR. Here we establish a Pmo25-associated kinase assay and show that the activity is dependent on Nak1/MOR and Sid1/SIN.  相似文献   

12.
Shor E  Weinstein J  Rothstein R 《Genetics》2005,169(3):1275-1289
Helicases of the RecQ family and topoisomerase III are evolutionarily conserved proteins important for maintenance of genome stability. In Saccharomyces cerevisiae, loss of the TOP3 gene, encoding topoisomerase III, results in a phenotype of slow growth, DNA damage sensitivity, meiotic defects, and hyperrecombination. The sole RecQ helicase in budding yeast, Sgs1, interacts with Top3 both physically and genetically, and the two proteins are thought to act in concert in vivo. Much recent genetic and biochemical evidence points to the role of RecQ helicases and topoisomerase III in regulating homologous recombination (HR) during DNA replication. Previously, we found that mutations in HR genes partially suppress top3 slow growth. Here, we describe the analysis of four additional mutational suppressors of top3 defects: shu1, shu2, psy3, and csm2. These genes belong to one epistasis group and their protein products interact with each other, strongly suggesting that they function as a complex in vivo. Their mutant phenotype indicates that they are important for error-free repair of spontaneous and induced DNA lesions, protecting the genome from mutation. These mutants exhibit an epistatic relationship with rad52 and show altered dynamics of Rad52-YFP foci, suggesting a role for these proteins in recombinational repair.  相似文献   

13.
By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, we have identified conditional alleles of two genes involved in chromosome segregation (cse). Mutations in CSE1 and CSE2 have a greater effect on the segregation of chromosomes carrying mutant centromeres than on the segregation of chromosomes with wild-type centromeres. In addition, the cse mutations cause predominantly nondisjunction rather than loss events but do not cause a detectable increase in mitotic recombination. At the restrictive temperature, cse1 and cse2 mutants accumulate large-budded cells, with a significant fraction exhibiting aberrant binucleate morphologies. We cloned the CSE1 and CSE2 genes by complementation of the cold-sensitive phenotypes. Physical and genetic mapping data indicate that CSE1 is linked to HAP2 on the left arm of chromosome VII and CSE2 is adjacent to PRP2 on chromosome XIV. CSE1 is essential and encodes a novel 109-kDa protein. CSE2 encodes a 17-kDa protein with a putative basic-region leucine zipper motif. Disruption of CSE2 causes chromosome missegregation, conditional lethality, and slow growth at the permissive temperature.  相似文献   

14.
A screening for multicopy suppressors of the G(1)/S blockage of a conditional sit4 hal3 mutant yielded the NHA1 gene, encoding a Na(+),K(+)/H(+) antiporter, composed of a transmembrane domain and a large carboxyl-terminal tail, which has been related to cation detoxification processes. Expression of either the powerful Saccharomyces cerevisiae Ena1 Na(+)/H(+)-ATPase or the Schizosaccharomyces pombe Sod2 Na(+)/H(+) antiporter, although increasing tolerance to sodium, was unable to mimic the Nha1 function in the cell cycle. Mutation of the conserved Asp residues Asp(266)-Asp(267) selectively abolished Na(+) efflux without modifying K(+) efflux and did not affect the capacity of Nha1 to relieve the G(1) blockage. Mutagenesis analysis revealed that the region near the carboxyl-terminal end of Nha1 comprising residues 800-948 is dispensable for sodium detoxification but necessary for transport of K(+) cations. Therefore, this portion of the protein contains structural elements that selectively modulate Nha1 antiporter functions. This region is also required for Nha1 to function in the cell cycle. However, expression of the closely related Cnh1 antiporter from Candida albicans, which also contains a long carboxyl-terminal extension, although allowing efficient K(+) transport does not relieve cell cycle blockage. This indicates that although the determinants for Nha1-mediated regulation of potassium transport and the cell cycle map very closely in the protein, most probably the function of Nha1 on cell cycle is independent of its ability to extrude potassium cations.  相似文献   

15.
《Cell reports》2023,42(7):112813
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
A novel test for the identification of genes involved in aldehyde metabolism is proposed, based on detection of altered sensitivity of the yeast to corresponding alcohols, metabolic precursors of the aldehydes. This attitude enabled to an unexpected detection increased sensitivity of mutants devoid of CuZn-superoxide dismutase (CuZnSOD) to allyl alcohol (precursor of acrolein) and nonenol. We interpret this finding as due to inactivation of some important element of aldehyde detoxification by increased flux of superoxide in DeltaCuZnSOD mutants.  相似文献   

18.
19.
A new efficient in vitro mutagenesis method for the generation of complete random mutant libraries, containing all possible single base substitution mutations in a cloned gene is described. The method is based on controlled use of polymerases. Four populations of DNA molecules are first generated by primer elongation so that they terminate randomly, but always just before a known type of base (before A, C, G or T respectively). Each of the four populations is then mutagenized in a separate misincorporation reaction, where the correct base can now be omitted. The regeneration of wild-type sequences can thus be efficiently avoided. Also, the misincorporating nucleotide concentrations can be optimized to give the three possible single mutations in close to equal ratio. The mutagenesis can be precisely localized within a predetermined target region of any size, and vector sequences remain intact. We have mutagenized the DNA coding for the alpha-fragment of Escherichia coli beta-galactosidase, and identified 176 different base substitution mutations by sequencing. The present method gives mutant yields of 40-60%, when the mutants contain about one amino acid change per protein molecule. All types of base substitution mutations can be generated and deletions are rare. The efficiency of this method permits the use of relatively elaborate screening systems to isolate mutants of either structural genes or regulatory regions.  相似文献   

20.
In the Melle-Boinot process for alcohol production, centrifuges are normally used for yeast recovery at the end of a batch fermentation. Centrifuges are expensive equipment and represent an impressive part of the equipment costs in alcohol industries. In the present work, an alternative method for yeast recovery using less expensive equipment was studied. Instead of using centrifuges, yeast was separated from the fermented broth by filter aid filtration, followed by separation of yeast from the filter aid using hydrocyclones. A stainless steel plate-and-frame filter of filtration area 1.14 m2 and two 30 mm hydrocyclones, which followed the Bradley and Rietema recommended proportions, were used in this work. The filter aid was perlite. Tests of direct separation of yeast from the fermented broth using the Bradley hydrocyclone proved to be completely unfeasible, since the maximal reduced total efficiency obtained was only 1%. When the hydrocyclones were used to separate perlite from the resuspended filtration cake, the perlite total separation efficiency obtained in the underflow was as high as 95% when using the Bradley hydrocyclone with an underflow diameter of 3 mm. To show the feasibility of the proposed new method of yeast recovery, a complete cycle of experiments, which included fermentation, yeast separation, and new fermentation using the recycled cells, was performed with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号