首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progesterone inhibits intracellular transport of lysosomal cholesterol in cultured cells, and thus at least in part mimics the biochemical phenotype of Niemann–Pick type C disease (NPC) in human fibroblasts. The goal of this study was to determine whether metabolism of progesterone to other steroids is affected by the NPC mutation or by P-glycoprotein (a known progesterone target). We found that human fibroblasts metabolize progesterone in three steps: rapid conversion to 5-pregnane-3,20-dione, which is then reduced to 5-pregnane-3β()-ol-20-one with subsequent 6-hydroxylation. The pattern and rates of progesterone metabolism were not significantly different in a variety of fibroblasts from normal individuals, NPC patients, and obligate heterozygotes. Inhibition of steroid 5-reductase with finasteride completely blocked metabolism of progesterone but had no effect on inhibition of LDL-stimulated cholesterol esterification (IC50=10 μM). Progesterone also partially inhibited 25-hydroxycholesterol-induced cholesterol esterification, with similar dose-dependence in normal and NPC fibroblasts. P-glycoprotein levels varied significantly among the various fibroblasts tested, but no correlation with NPC phenotype or rate of progesterone metabolism was noted, and P-glycoprotein inhibitors did not affect conversion of progesterone to products. These results indicate that metabolism of progesterone in human fibroblasts is largely independent of its ability to interfere with cholesterol traffic and P-glycoprotein function.  相似文献   

2.
Chromosomal studies were performed on peripheral blood lymphocytes and cultured skin fibroblasts from five Israeli-Moroccan families with ataxia-telangiectasia. A total of 24 individuals, including seven propositi, was investigated. Among the probands, significantly elevated rates of chromosome damage were observed in both blood and skin. Skin fibroblasts of affected individuals showed several orders of magnitude more chromosome breakage than lymphocytes. Increased rates of chromosome damage were also observed in the fibroblasts of some phenotypically normal family members (obligate heterozygotes and sibs) when compared to normal controls. An apparent abnormal clone of cells, possessing a large acrocentric marker chromosome (14q+), was observed in varying proportions among cells of all the propositi (2-5% of lymphocytes; 1-9% of fibroblasts).  相似文献   

3.
Regulation of intracellular cholesterol metabolism has been studied in Epstein-Barr virus-transformed lymphoblasts from patients with Niemann-Pick type C (NPC) and the Nova Scotia type D (NPD) disease. Addition of LDL to normal lymphoblasts cultured in lipoprotein-deficient medium increased cholesterol esterification 10-fold (to a maximum of 1.0 nmol/h/mg protein at 15 h), while little stimulation was seen in NPC cells. The response by NPD lymphoblasts was intermediate, reaching approximately half of normal values by 12–24 h. Lymphoblasts from both NPC and NPD obligate heterozygotes exhibited 50% of normal LDL-stimulated cholesterol esterification at 6 h, when activity was s1?0% of normal values in patient cells. Fluorescence staining with filipin indicated excessive intracellular accumulation of LDL-derived cholesterol in both NPC and NPD lymphoblasts. Downregulation of LDL receptor mRNA levels by LDL, measured by S1 nuclease protection assay, was also impaired in NP lymphoblasts and fibroblasts (NPC > NPD), although a similar rate of receptor protein down-regulation by LDL (t12 = 10–15 h) was observed in normal and NP lymphoblasts. In contrast, LDL down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not appear to be affected in NP cells: LDL produced a 3-fold (lymphoblasts) of > 10-fold (fibroblasts) decrease by 12 h in both normal and affected cells. Thus, NPC and NPD lymphoblasts exhibit distinct defects in cholesterol esterification and storage, similar to those observed in mutant fibroblasts. Other regulatory responses are also impaired in NPC lymphoblasts but appear to be less affected in NPD cells. Lymphoblasts should provide a valuable immortalized cell line model for study of defective regulation of cholesterol esterification and transfort in Niemann-Pick type II disease, and may also suitable for diagnosis and carrier detection.  相似文献   

4.
To investigate biochemical heterogeneity within Niemann-Pick type C disease (NPC), the two most characteristic abnormalities, namely (1) kinetics of LDL-stimulated cholesteryl ester formation and (2) intravesicular accumulation of LDL-derived unesterified cholesterol, evaluated by histochemical filipin staining, were studied in cultured skin fibroblasts from a population of 125 NPC patients. Profound alterations (esterification rates less than 10% of normal, very numerous and intensely fluorescent cholesterol-filipin granules) were demonstrated in 86% of the cases, depicting the 'classical' NPC phenotype. The remaining cell lines showed a graded less severe impairment and more transient delay in the induction of LDL-mediated cholesteryl esterification, along with an attenuated accumulation of unesterified cholesterol. In particular, cells from a small group (7%) of patients, which have been individualized as representative of a 'variant' phenotype, showed only slight alterations of esterification, restricted to the early phase of LDL uptake and undistinguishable from those in heterozygotes. In these cells, an abnormal cytochemical distribution of LDL-derived cholesterol, although moderate, was still evident provided rigorous experimental conditions were followed. A third, less clearly individualized group (7%), differing from the classical phenotype mostly by higher rates of cholesteryl ester formation, has been designated as an 'intermediary' phenotype to reflect a more difficult diagnosis of such patients. These findings have an important bearing with regard to diagnosis and genetic counselling, although the significance of such a phenotypic variation in terms of genetic heterogeneity has still to be demonstrated. A given biochemical phenotype was however a constant observation within a family (14 pairs of siblings tested so far). The unique feature of LDL-cholesterol processing alterations in NPC has been further established from comparative studies in Wolman disease and I-cell disease, showing normal or different intracellular distribution of unesterified LDL-derived cholesterol in the latter disorders. Correlation between biochemical and clinical NPC phenotypes was only partial, but a correlation between the severity of alterations in cholesterol processing and sphingomyelin catabolism could be established.  相似文献   

5.
Cholesterol synthesis, esterification and efflux have been comparatively studied in control fibroblasts and in fibroblasts from patients with Niemann-Pick disease type C (NPC). Sterol synthesis was markedly increased in NPC cells as compared to controls, either in whole medium or in medium devoid of lipoproteins. 14C-oleic acid incorporation into cholesteryl-esters was 2 to 3 fold reduced in NPC cells, and esterification of 14C-exogenous cholesterol was dramatically (15-30 fold) decreased. ACAT activity, measured in vitro, was not significantly altered in NPC cells. Finally, cholesterol efflux appeared to be decreased in NPC fibroblasts as compared to controls. The hypothesis of a defect in exogenous cholesterol access to intracellular regulatory pools is proposed.  相似文献   

6.
We have investigated the use of the gamma-H2AX assay, reflecting the presence of DNA double-strand breaks, as a possible means for identifying individuals who are mildly hypersensitive to ionizing radiation, such as some ATM heterozygotes. We compared levels of gamma-H2AX foci after irradiation in cells from six apparently normal individuals as well as from individuals from two separate AT families including the proband, mother, father and three unaffected siblings in each family. After a 1-Gy single acute (high-dose-rate) gamma-ray dose delivered to noncycling contact-inhibited monolayers of cells, clear differences were seen between samples from normal individuals (ATM(+/+)) and probands (ATM(-/-)) at nearly all sampling times after irradiation, but no clear distinctions were seen for cells from normal compared to obligate heterozygotes (ATM(+/-)). In contrast, after 24 h of continuous irradiation at a dose rate of 10 cGy/h, appreciable differences in numbers of foci per cell were observed for cells from individuals for all the known ATM genotypes compared with controls. Four unaffected siblings had mean numbers of foci per cell similar to that for the obligate heterozygotes, whereas the other two had mean values similar to that for normal controls. We determined independently that those siblings with mean numbers of foci per cell in the range of ATM heterozygotes carried the mutant allele, while both siblings with a normal number of foci per cell after irradiation had normal alleles. A more limited set of experiments using lymphoblastoid cell strains in the low-dose-rate assay also revealed distinct differences for normal compared to ATM heterozygotes from the same families and opens the possibility of using peripheral blood lymphocytes as a more suitable material for an assay to detect mild hypersensitivities to radiation among individuals.  相似文献   

7.
Niemann-Pick type C1 (NPC1) disease is an autosomal-recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. The NPC1 gene is expressed in every tissue of the body, with liver expressing the highest amounts of NPC1 mRNA and protein. A number of studies have now indicated that the NPC1 protein regulates the transport of cholesterol from late endosomes/lysosomes to other cellular compartments involved in maintaining intracellular cholesterol homeostasis. The present study characterizes liver disease and lipid metabolism in NPC1 mice at 35 days of age before the development of weight loss and neurological symptoms. At this age, homozygous affected (NPC1(-/-)) mice were characterized with mild hepatomegaly, an elevation of liver enzymes, and an accumulation of liver cholesterol approximately four times that measured in normal (NPC1(+/+)) mice. In contrast, heterozygous (NPC1(+/-)) mice were without hepatomegaly and an elevation of liver enzymes, but the livers had a significant accumulation of triacylglycerol. With respect to apolipoprotein and lipoprotein metabolism, the results indicated only minor alterations in NPC1(-/-) mouse serum. Finally, compared to NPC1(+/+) mouse livers, the amount and processing of SREBP-1 and -2 proteins were significantly increased in NPC1(-/-) mouse livers, suggesting a relative deficiency of cholesterol at the metabolically active pool of cholesterol located at the endoplasmic reticulum. The results from this study further support the hypothesis that an accumulation of lipoprotein-derived cholesterol within late endosomes/lysosomes, in addition to altered intracellular cholesterol homeostasis, has a key role in the biochemical and cellular pathophysiology associated with NPC1 liver disease.  相似文献   

8.
The Niemann-Pick group of diseases can be broadly classified into two types based on clinical and biochemical characteristics. Type I is characterized by a primary deficiency of lysosomal sphingomyelinase while Type II may have a defect in the regulation of intracellular cholesterol metabolism. We have studied cholesterol esterification in cultured fibroblasts from patients with two phenotypes of Type II disease: an Acadian population of southwestern Nova Scotia (Canada) with a form of the disease known as Niemann-Pick type D (NPD) and a group of panethnic origin with Niemann-Pick type C (NPC). Addition of whole serum to normal fibroblasts grown initially in lipoprotein-deficient serum caused a rapid (within 6 h) increase in cholesterol esterification, reaching maximum values at around 24 h, while NPC fibroblasts showed little increase (less than 10% of normal). In contrast, cholesterol esterification in NPD fibroblasts increased slowly during the first 6-12 h and reached 50% of normal values by 24 h. 25-Hydroxycholesterol, a non-lipoprotein stimulator of cholesterol esterification, caused a similar stimulation of cholesterol esterification in NPC, NPD and normal cells. This was inhibited by addition of serum in mutant but not in normal cells. Within 24 h of serum addition, free cholesterol accumulated in all cell types with NPC greater than NPD greater than normal. These observations indicate that (a) regulation of cholesterol esterification in response to serum lipoproteins (but not 25-hydroxycholesterol) is abnormal in both NPC and NPD fibroblasts, and (b) the biochemical phenotypes of fibroblasts from NPC and NPD patients are distinct.  相似文献   

9.
Acid sphingomyelinase (ASMase)-deficient Niemann-Pick disease (NPD) is caused by mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene, resulting in accumulation of sphingomyelin in the lysosomes and secondary changes in cholesterol metabolism. We hypothesized that the oxidation product of cholesterol, 7-ketocholesterol (7-KC), might increase in the plasma of patients with ASMase-deficient NPD. In this study, a rapid and nonderivatized method of measurement of plasma 7-KC by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Plasma samples from healthy subjects, patients with ASMase-deficient NPD, nonaffected ASMase-deficient NPD heterozygotes, Niemann-Pick type C (NPC) disease, glycogen storage disorder type II (GSDII), Gaucher disease (GD), mucopolysaccharidosis type II (MPSII), Krabbe disease (KD), and metachromatic leukodystrophy (MLD) were tested retrospectively. Markedly elevated 7-KC was found in patients with ASMase-deficient NPD and NPC disease that showed significant differences from ASMase-deficient NPD heterozygotes; patients with GSDII, GD, MPSII, KD, and MLD; and normal controls. The analysis of plasma 7-KC by LC-MS/MS offers the first simple, quantitative, and highly sensitive method for detection of ASMase-deficient NPD and could be useful in the diagnosis of both ASMase-deficient NPD and NPC disease.  相似文献   

10.
Summary Assuming adequate technique, determinations of intracellular phenylalanine and tyrosine concentrations in lymphocytes are very reproducible. The concentrations found in this study (1981) in five homozygotes and five obligate heterozygotes for PKU and seven normals, are identical with the corresponding concentrations found in 1979 in 13 homo-and 19 obligate heterozygotes for PKU and 26 normals.The intracellular concentrations in six homo-and five heterozyogtes for hyper-Phe, as determined in the present study, are intermediate between the concentrations found in PKUs and normals in the present and the former study. As in PKUs, there is no difference between homo-and heterozygotes for hyper-Phe. The hypothesis of an intracellular threshold concentration for phenylalanine triggering the production of a toxic metabolite, could explain the severe brain damage observed in untreated PKU-homozygotes, the slight damage in well-treated PKU-homozygotes and in PKU-heterozygotes, and the absence of damage in hyper-Phe homozygotes (and heterozygotes). Also the difference in brain function between homozygotes for both conditions (PKU-treated), can be understood in spite of comparably elevated extracellular phenylalanine concentrations in young patients.  相似文献   

11.
Rosin  Miriam P.  Ochs  H. D.  Gatti  R. A.  Boder  E. 《Human genetics》1989,83(2):133-138
Summary The objective of this study was to obtain an estimate of the frequency distribution of spontaneous chromosomal breakage occurring in vivo in oral epithelia of 20 ataxiatelangiectasia patients (A-T homozygotes) and 26 parents (A-T obligate heterozygotes). Samples of exfoliated cells were obtained from each individual by swabbing the oral cavity and preparing air-dried slides. The percentage of exfoliated cells with micronuclei (MEC frequency) was used as an in vivo indicator for the amount of chromosomal breakage occurring in the tissue. As a population group, MEC frequencies of the A-T patients differed significantly from controls (mean for A-T patients, 1.51; for controls, 0.29; P<0.01). However, the values observed in individual patients ranged from MEC frequencies 10- to 12-fold above control values, to frequencies overlapping the upper values observed in the controls. Similarily, MEC frequencies observed among the A-T heterozygotes differed significantly from controls (mean for A-T heterozygotes, 1.02, mean for controls, 0.29; P<0.01). However, only 16 of the 26 individuals sampled had MEC frequencies >0.5%, the 90th percentile for controls (compared with 16 of the 20 A-T patients examined). Of the A-T patients 11 had been previously assigned to complementation groups on the basis of sensitivity to x-irradiation. Seven of the patients belonged to group A and had MEC frequencies ranging from 0.3% to 1.9% with the remaining patients belonging to group C with MEC frequencies of 0.2% to 0.9%. The data presented in this paper suggest that although levels of spontaneous breakage in epithelial tissues of A-T patients and A-T obligate heterozygotes are often significantly elevated, this is not the case in all individuals.  相似文献   

12.
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status.  相似文献   

13.
Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol.  相似文献   

14.
Summary Louis-Bar (L-B) syndrome, also called ataxia-telangiectasia, is cytogenetically characterized by an increased frequency of spontaneous and induced chromosomal aberrations (CA) in cultured lymphocytes and skin fibroblasts. However, it is not yet clear whether the chromosomal instability is also present in uncultured cells. The spontaneous and bleomycin-induced CA in peripheral lymphocytes of 8 L-B patients were evaluated. The micronucleus test was also performed, for the first time in lymphocytes by the cytokinesis-block method, and in uncultured cells of the oral cavity and hair root. The spontaneous frequency of CA and micronuclei in lymphocytes was about 3 times higher in L-B patients than in controls, these two cytogenetic parameters being highly correlated. Moreover, the induction by bleomycin of CA was higher in patients than in controls. The micronuclei in buccal and hair root cells of patients were normal. It remains to be determined whether the different responses obtained with cultured and uncultured cells are the result of the different L-B gene expression of chromosomal instability or whether they arise because of a particular cell sensitivity to culture conditions. The spontaneous and induced CA in lymphocytes of heterozygotes cultured in the presence of L-B serum were studied to evaluate a possible increased sensitivity of heterozygotes to a possible diffusible clastogenic factor present in the plasma of L-B patients. We could not demonstrate the presence of any factor that enhances CA in normal subjects or in heterozygote carriers.  相似文献   

15.
Niemann-Pick C (NPC) is an autosomal recessive lysosomal lipid storage disease characterized by progressive central nervous system degeneration. In cultured human NPC fibroblasts, LDL-derived cholesterol accumulates in lysosomes and endosomes, LDL-cholesterol transport from endocytic compartments to other cellular compartments is delayed, and LDL does not elicit normal homeostatic responses. Currently, there is no therapy that delays the onset of neurological symptoms or prolongs the life span of NPC children. We have developed and implemented an amphotericin B-mediated cytotoxicity assay to screen for potential therapeutic drugs that induce cholesterol movement in cultured NPC cells. NPC cells are relatively resistant to amphotericin B killing due to intracellular sequestration of cellular cholesterol. The screen was carried out using simian virus 40-transformed ovarian granulosa cells from the npc (nih) mouse model of NPC disease. A library of 44240 compounds was screened and 55 compounds were identified that promote amphotericin B-mediated killing of NPC cells. One compound, NP-27, corrected the NPC phenotype by four different measures of cholesterol homeostasis. In addition to making NPC cells more sensitive to amphotericin B, NP-27 stimulated two separate cholesterol transport pathways and restored LDL stimulation of cholesterol esterification to near normal levels.  相似文献   

16.
A central feature of Niemann-Pick Type C (NPC) disease is sequestration of cholesterol and glycosphingolipids in lysosomes. A large phenotypic variability, on both a clinical as well as a molecular level, challenges NPC diagnosis. For example, substantial difficulties in identifying or excluding NPC in a patient exist in cases with a "variant" biochemical phenotype, where cholesterol levels in cultured fibroblasts, the primary diagnostic indicator, are only moderately elevated. Here we apply quantitative microscopy as an accurate and objective diagnostic tool to measure cholesterol accumulation at the level of single cells. When employed to characterize cholesterol enrichment in fibroblasts from 20 NPC patients and 11 controls, considerable heterogeneity became evident both within the population of cells cultured from one individual as well as between samples from different probands. An obvious correlation between biochemical phenotype and clinical disease course was not apparent from our dataset. However, plasma levels of HDL-cholesterol (HDL-c) tended to be in the normal range in patients with a "variant" as opposed to a "classic" biochemical phenotype. Attenuated lysosomal cholesterol accumulation in "variant" cells was associated with detectable NPC1 protein and residual capability to upregulate expression of ABCA1 in response to LDL. Taken together, our approach opens perspectives not only to support diagnosis, but also to better characterize mechanisms impacting cholesterol accumulation in NPC patient-derived cells.  相似文献   

17.
The purpose of this study was to determine the capacity of Niemann-Pick type C (NPC) fibroblasts to transport cholesterol from the cell surface to intracellular membranes. This is relevant in light of the observations that NPC cells display a sluggish metabolism of LDL-derived cholesterol, a phenomenon which could be explained by a defective intracellular transport of cholesterol. Treatment of NPC cells for 4 h with 0.1 mg/ml of LDL failed to increase the incorporation of [14C]oleic acid into cholesterol [14C]oleate, an observation consistent with previous reports on this cell type (Pentchev et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8247). Normal fibroblasts, however, displayed the classical upregulation (6-fold over control) of the endogenous esterification reaction in response to LDL exposure. Incubation of normal or NPC fibroblasts with sphingomyelinase (100 mU/ml; Staphylococcus aureus) led to a rapid and marked increase (9- and 10-fold for normal and NPC fibroblasts, respectively, after 4 h) in the esterification of plasma-membrane-derived [3H]cholesterol suggesting that sphingomyelin degradation forced a net transfer of cholesterol from the cell surface to the endoplasmic reticulum. The similar response in normal and mutant fibroblasts to the degradation of sphingomyelin suggests that plasma membrane cholesterol can be transported into the substrate pool of ACAT to about the same extent in these two cell types. Degradation of cell sphingomyelin in NPC fibroblasts also resulted in the movement of 20-25% of the cellular cholesterol from a cholesterol oxidase susceptible pool into oxidase-resistant pools, implying that a substantial amount of plasma membrane cholesterol was internalized after sphingomyelin degradation. This cholesterol internalization was not accompanied by an increased rate of membrane internalization, as measured by [3H]sucrose uptake. Although NPC cells showed a relative accumulation of unesterified cholesterol and a sluggish esterification of LDL-derived cholesterol when exposed to LDL, these cells responded like normal fibroblasts with regard to their capacity to transport cholesterol from the cell surface into intracellular sites in response to sphingomyelin degradation. It therefore appears that NPC cells, in contrast to the impaired intracellular movement of lipoprotein-derived cholesterol, do not display a general impairment of cholesterol transport between the cell surface and the intracellular regulatory pool of cholesterol.  相似文献   

18.
The activity of acyl-CoA:cholesterol acyltransferase (ACAT; EC 2.3.1.26) was measured in fibroblast homogenates from Niemann-Pick Type C (NPC) and Type D (NPD) patients to determine whether these cells exhibit similar defects in the regulation of cholesterol esterification. ACAT activity in normal cells cultured in the absence of serum lipoproteins responded rapidly (within 6 h) to the addition of serum and reached peak levels at 12-24 h, whereas little stimulation of activity in NPC cells was observed. In contrast, ACAT activity in NPD fibroblasts (cell lines from four different patients) began to increase between 6 and 12 h after serum addition, reaching levels up to 50% of normal values at 24 h. ACAT activity in NPC and NPD cell extracts could not be stimulated by preincubation with normal cell homogenates, nor was complementation between NPC and NPD homogenates observed. Addition of 25-hydroxycholesterol to fibroblasts cultured in delipidated serum increased ACAT activity for all three cell types, although stimulation in NPD cells was less than that observed in NPC cells. ACAT activity of deoxycholate-solubilized homogenates reconstituted into phosphatidylcholine vesicles was independent of the presence of serum lipoproteins during culture and dependent on cholesterol present in the vesicles for all cell types. However, ACAT activities of mutant fibroblasts in vesicles plus cholesterol were significantly (about 40%) lower than control levels. These results suggest that the metabolic lesions in NPC and NPD cells are biochemically distinct and that both may involve factors in addition to the availability of cholesterol substrate for the ACAT enzyme.  相似文献   

19.
Four patients with hyperomithinemia and gyrate atrophy of the choroid and retina age described. In vivo response to vitamin B6 is documented in three of the four patients by significant reduction of fasting serum ornithine and increase of lysine after oral B6 supplementation. Oral glucose tolerance testing in one patient resulted in marked changes in serum ornithine and lysine concentrations, in addition to mild glucose intolerance. Histochemical staining of punch muscle biopsies showed intracellular inclusions in type 2 muscle fibers. Tubular aggregates, approximately 60 nm in diameter and adjacent to the sarcoplasmic membrane, were seen on electron microscopy. Obligate heterozygotes had a mean serum ornithine slightly higher than normal, but there was considerable overlap with the normal range. Oral ornithine tolerance tests distinguished carriers from controls in only one of five cases. Deficient activity of ornithine ketoacid aminotransferase (OKT) in cultured skin fibroblasts was documented in all four patients. Approximately half-normal levels were found in obligate heterozygotes. In vitro response to B6 was manifest by increased OKT activity at increased concentrations of pyridoxal phosphate in fibroblasts from the patients.  相似文献   

20.
A "newly detected" variant of methylenetetrahydrofolate (MTHF) reductase (E.C.1.1.1.68) deficiency associated with an 8-15-fold increase in plasma total homocysteine was discovered in two unrelated patients who had subnormal serum folate. However, the homocysteinemia was corrected by oral folic acid supplement. When MTHF reductase activities in lymphocyte extracts before and after heat treatment at 46 C for 5 min were compared, there was a consistent difference in heat stability between the enzyme from the controls and that from the patients. The mean residual activities after heat treatment were 37.0% (34.1%-42.6%) in the controls and 15.2% and 15.1% in the two patients, respectively. Two obligate heterozygotes for severe MTHF reductase deficiency had residual activities of 39.6% and 37.7%. A similar difference in thermostability was demonstrated in cultured skin fibroblasts and lymphoblasts. Studies with a mixture of lymphoblast extracts from a control and a patient and with partially purified enzyme suggested that the thermostability was an independent characteristic of MTHF reductase. These observations provided evidence of a hitherto undescribed mutant MTHF reductase in our two patients with intermediate homocysteinemia. Unlike previously reported patients with MTHF reductase deficiency, there was no apparent clinical problem related to the abnormal folate or homocysteine metabolism during infancy or childhood in these two subjects, but one of them had vascular disorders in adulthood. The observations in these two subjects suggested that a moderate deficiency of MTHF reductase might be associated with vascular disorders in adult life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号