首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aconitum heterophyllum is the only non-toxic species of Aconitum genus having immense therapeutic potential. To date, only roots of this plant species are used for the preparation of various herbal formulations while leaves are discarded due to lack of information on the presence of any therapeutically active compounds. To the best of our knowledge, this is the first report on the detection and quantification of diterpene steviol in the leaves of A. heterophyllum. Interestingly, the level of steviol is equivalent to Stevia rebaudiana leaves which is the richest source reported so far. Thus, A. heterophyllum leaves will not only provide a novel source for extraction of steviol but also benefit the harvesters to get additional economic returns on leaf biomass for this high-value non-toxic plant species.  相似文献   

2.
3.
4.
Copper oxide (CuO) nanoparticles (NPs) synthesized through co-precipitation method were employed in MS media during in vitro culture of Stevia rebaudiana. Physiological characteristics, production of steviol glycosides, and antioxidative parameters were investigated in regenerated plants. CuO NPs had crystalline monoclinic cubic cuprous oxides with average size 47 nm. The NPs were applied at 0, 0.1, 1.0, 10, 100 and 1000 mg/L in MS media for direct organogenesis of S. rebaudiana from nodal segments. Shoot organogenesis was found highest (88.5%) at 10 mg/L CuO and average shoot length, mean number of shoot per explant, and fresh weight were also found significantly higher at the same concentration. High performance liquid chromatography (HPLC) illustrated significant rise of bioactive major steviol glycosides (rebaudioside A and stevioside) at 10 mg/L CuO NPs in MS media. The oxidative stress produced by CuO nanoparticles on S. rebaudiana was affirmed by antioxidant activities i.e. total antioxidant activity (TAC), total reducing power (TRP) and 2,2-diphenyl-1-picryl hydrazyl (DPPH)-free radical scavenging activity. The oxidative stress generated by NPs involved production of antioxidative molecules total phenolic content (TPC), total flavonoid content (TFC) depending on NPs concentration. The study concludes that copper oxide nanoparticles functions as a stimulator of bioactive components productions, and can be employed in in vitro batch cultures.  相似文献   

5.
Drought is the most significant abiotic stress in agriculture; thus, this area of studies seems to be one of the most important challenges in plant biology. Data about gene expression under drought are crucial to study drought response mechanisms and to select the genes for a transgenic approach. Quantitative RT-PCR is a powerful method for gene expression analysis; however, obtaining proper data normalization requires internal reference genes with stable level of expression. In the present paper ten potential reference genes were examined in two developmental stages of barley for their expression stability during leaf growth and increasing drought level. The results indicated that leaf growth per se affects the expression of studied genes to the similar extent as the drought and showed that different genes were most stably expressed in the seedling and the heading stage. As a result, different sets of reference genes were selected for different applications. For instance, ADP-ribozylation factor 1 and ubiquitin encoding genes were most suitable to study drought-induced changes in gene expression at the seedling stage, whereas actin and GAPDH genes were useful during heading, and ADP-ribozylation factor 1 and HSP90 allowed for the comparison between these two stages. Our data proved the necessity for validation of commonly used reference genes. The results indicate that expression of ADP seems to be the least affected by all the factors studied in the present experiment. However, when the effect of only one factor among those investigated in this work will be studied, different genes should be considered to be used as the references due to the higher stability of their expression.  相似文献   

6.
7.
8.
9.
Expression profiling of miRNAs has the ability to reveal the essence of somatic embryogenesis (SE). qRT-PCR is one of the most commonly used techniques for dynamic miRNA detection but requires optimal reference genes for data reliability. This is the first report on reference gene validation for miRNA expression normalization in Lilium (Lilium pumilum DC. Fisch. and Lilium davidii var. unicolor). In this study, seventeen miRNAs together with two snRNAs (U4, U6), one rRNA (5S rRNA) and three protein-coding genes (FP, ACT, GAPDH) were selected as reference candidates, and their expression stability was validated by qRT-PCR among eleven developing SE cultures in two lilies. Four normalization algorithms, including geNorm, BestKeeper, NormFinder and RefFinder, were also used to evaluate the stability of the reference candidates. For Lilium pumilum DC. Fisch., lpu-miR159a was the optimal reference gene during SE, followed by lpu-miR408b, while U6 was the least stable reference candidate. For Lilium davidii var. unicolor, FP presented greater stability than did half of the miRNA candidates, but the best reference gene was lda-miR162, followed by lda-miR159a. Further analysis of the expression level of miR156 and miR529 was used to evaluate the validity of the reference genes in both lilies. In general, miRNAs are superior to common protein-coding genes and snRNAs / rRNAs as reference genes for miRNA expression normalization during Lilium SE, and the most suitable reference miRNA is different between two species in the same Lilium genus. This is a pioneer study using suitable miRNAs as reference genes in Lilium and constitutes a small but essential step for the further exploration of miRNA function in Lilium, thus offering valuable references for other plants.  相似文献   

10.
Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana, coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA, for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.  相似文献   

11.
12.
13.
Real time quantitative PCR (qPCR) is widely used in gene expression analysis for its accuracy and sensitivity. Reference genes serving as endogenous controls are necessary for gene normalization. In order to select an appropriate reference gene to normalize gene expression in Casuarina equisetifolia under salt stress, 10 potential reference genes were evaluated using real time qPCR in the leaves and roots of plants grown under different NaCl concentrations and treatment durations. GeNorm, NormFinder, and BestKeeper analyses reveal that elongation factor 1-alpha (EF1α) and ubiquitin-conjugating enzyme E2 (UBC) were the most appropriate reference genes for real time qPCR under salt stress. However, β-tubulin (βTUB) and actin 7, which were widely used as reference genes in other plant species, were not always stably expressed. The combination of EF1α, UBC, uncharacterized protein 2, DNAJ homolog subfamily A member 2, and glyceraldehyde-3-phosphate dehydrogenase should be ideal reference genes for normalizing gene expression data in all samples under salt stress. It indicates the need for reference gene selection for normalizing gene expression in C. equisetifolia. In addition, the suitability of reference genes selected was confirmed by validating the expression of WRKY29-like and expansin-like B1. The results enable analysis of salt response mechanism and gene expression in C. equisetifolia.  相似文献   

14.
15.
16.
The appropriate reference genes are crucial for normalization of the target gene expression in qRT-PCR analysis. Broomcorn millet (Panicum miliaceum L.) is one of the most important crops in drought areas worldwide, while the systematical investigation and evaluation of reference genes has not been investigated in this species up to now. Here, 9 commonly used reference genes were selected to detect their expressional stability in different tissues and under different stresses in broomcorn millet. ΔCt, BestKeeper, NormFinder and GeNorm approaches were used to evaluate the potentiality of these candidate genes as the reference gene in broomcorn millet. Taken together, results found that 18S and GAPDH were the suitable reference genes for gene expression normalization in different tissues and under stress treatment in broomcorn millet. This was the first study to investigate the reference genes for qRT-PCR analysis in broomcorn millet, which will facilitate the gene expression studies and also accelerate revealing the molecular mechanism of well-adapted extreme climatic conditions.  相似文献   

17.

Key message

A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat.

Abstract

Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01–AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号