首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We examined the effects of nutrient amendments on epilimnetic freshwater bacteria during three distinct periods in the eutrophic Lake Mendota's seasonal cycle (spring overturn, summer stratification and autumn overturn). Microcosm treatments enriched solely with phosphorus containing compounds did not result in a large bacterial community composition (BCC) change or community activity response (assessed via alkaline phosphatase activity, APA) relative to the controls during any season. Treatments enriched with carbon‐ and nitrogen‐containing compounds resulted in a dramatic BCC change and a large APA increase in the autumn and spring seasons, but only treatments receiving carbon, nitrogen and phosphorus (CNP) exhibited similar responses in the summer season. Despite the fact that the amendments created similar CNP concentration conditions across seasons, the BCC following amendment greatly varied among seasons. 16S rRNA gene sequence analysis indicated that many common freshwater bacterial lineages from the Alpha‐ and Betaproteobacteria class and Bacteroidetes phylum were favoured following nutrient (CNP) addition, but individual taxa were generally not favoured across all seasons. Targeted quantitative PCR analysis revealed that the abundance of the Actinobacteria acIB1 cluster decreased in all microcosms during all three seasons, while the Flavobacterium aquatile (spring) and ME‐B0 (summer) clusters of Bacteroidetes increased following CNP addition. These results suggest a particular bacterial group is not universally favoured by increased nutrient loads to a lake; therefore, efforts to predict which bacteria are involved in nutrient cycling during these periods must take into account the seasonality of freshwater bacterial communities.  相似文献   

2.
Species can be rare or common in three different dimensions: geographic range size, habitat breadth, and local abundance. Understanding drivers of rarity are not only fundamentally interesting; it is also pertinent for their conservation. We addressed this challenge by analyzing the rarity of 291 native freshwater fishes occurring in ca 3500 independent stream reaches that span a broad environmental gradient across continental USA. Using phylogenetic regression and path analysis, we examined the concordance among the three rarity dimensions, and identified possible mechanisms by which species life‐history, habitat affinities, and biogeography drive variation in rarity. Weak double extinction jeopardies were driven by weakly positive correlations between habitat breadth and local abundance, and between habitat breadth and geographic range size. However, a triple extinction jeopardy was averted as local abundance and range size were not positively linked in our study. This is because large‐river and lacustrine habitat use mediated a trade‐off between local abundance and range size. Large rivers and lacustrine habitats represent important dispersal pathways and refugia that enabled fishes to acquire wide ranges; however, species using these habitats are less abundant overall because they are less adapted to small lotic channels, which comprise the majority of stream habitats in the US. Life‐history traits were key in governing the relationship between abundance and range size as large‐river and lacustrine habitat use were driven by body size, egg size, and parental care. Our analysis contributes novel insights into mechanisms that underlie multiple dimensions of rarity in freshwater fish and informs the prioritization of multiply rare species for conservation.  相似文献   

3.
4.
5.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

6.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

7.
1. Studies of species distributions across environmental gradients further our understanding of mechanisms regulating species diversity at the landscape scale. For some freshwater taxa the habitat gradient from small, shallow and temporary ponds to large, deep and permanent lakes has been shown to be an important environmental axis. Freshwater snails are key players in freshwater ecosystems, but there are no comprehensive studies of their distributions across the entire freshwater habitat gradient. Here we test the hypothesis that snail species in the family Physidae are distributed in a non‐random manner across the habitat gradient. We sampled the snails, their predators and the abiotic environment of 61 ponds and lakes, spanning a wide range in depth and hydroperiod. 2. Temporary habitats had the lowest biomass of predators. Shallow permanent ponds had the highest biomass of invertebrate predators but an intermediate fish biomass. Deep ponds and lakes had the highest fish biomass and intermediate invertebrate biomass. Five species of physids occurred in the regional species pool and 60 of the 61 ponds and lakes surveyed contained physid snails. Each pond and lake contained an average of just 1.2 physid species, illustrating limited membership in local communities and substantial among‐site heterogeneity in species composition. 3. Physids showed strong sorting along the habitat gradient, with Physa vernalis found in the shortest hydroperiod ponds and Aplexa elongata, P. gyrina, P. acuta and P. ancillaria found in habitats of successively greater permanence. When organised into a site‐by‐species incidence matrix with sites ordered according to their hydroperiods, we found the pattern of incidence to be highly coherent, showing that much of the heterogeneity in species composition from one pond to another is explained by hydroperiod. We also found that the number of species replacements along this gradient was higher than random, showing that replacement is more important than nesting in describing species composition in ponds of different hydroperiod. 4. Discriminant analysis showed that pond depth, invertebrate biomass and fish biomass were the best predictors of species composition. Analysis of these niche dimensions showed that P. vernalis and A. elongata were most successful in shallow, temporary ponds with few predators. P. gyrina and P. acuta were typically found in ponds of intermediate depth and high predator abundance. P. ancillaria was found in the deepest lakes, which had abundant fish predators but few invertebrate predators. Of the five species considered, P. ancillaria, P. vernalis and A. elongata were relatively specialised with regard to key habitat characteristics, P. gyrina was moderately generalised and P. acuta was remarkably generalised, since it alone occurred across the entire freshwater habitat gradient. The exceptional habitat breadth of P. acuta stands in contrast to distributional studies of other freshwater taxa and deserves further attention.  相似文献   

8.
9.
10.
Chemical signals released by predators or injured prey often induce shifts in the traits of prey species, which may in turn affect species interactions. Here we investigate the role that chemical cues play in mediating species interactions in the littoral food web of lakes. Previous studies have shown that predators induce shifts in the morphology, life history, and behavior of the freshwater snail Physella, but the ecological consequences of developing these inducible defenses are not well documented. We observed habitat use of the freshwater snail Physella gyrina along a depth gradient in a natural lake, and found they increased their use of covered habitats with increasing depth. We hypothesized that this habitat shift was due to changes in the level and type of predation risk, and that the habitat shift would affect periphyton standing crops. These hypotheses were tested in a mesocosm experiment in which we manipulated the presence of molluscivorous fish and crayfish. Predators were confined to cages and snail density was identical in all treatments, so any effects of predators were mediated through trait shifts induced by chemical cues. In the presence of fish, Physella moved under cover, but in the presence of crayfish, Physella avoided cover and moved to the water surface. These non‐lethal effects of predators on snail habitat use influenced the interaction between snails and their periphyton resources. In the presence of fish, periphyton standing crop in covered habitats was reduced to just 8% of periphyton in the absence of fish. Crayfish had no significant effect on periphyton in covered habitats, but they reduced periphyton in near‐surface habitats to 39% of the standing crop in the absence of crayfish. The combined effects of fish and crayfish were generally intermediate to their individual effects. We conclude that because chemical cues often have strong effects on individual traits and trophic interactions are sensitive to trait values, chemical cues may play an important role in shaping the structure and dynamics of food webs.  相似文献   

11.
The first representative of the phylum Planctomycetes, Planctomyces bekefii, was described nearly one century ago. This morphologically conspicuous freshwater bacterium is a rare example of as-yet-uncultivated prokaryotes with validly published names and unknown identity. We report the results of molecular identification of this elusive bacterium, which was detected in a eutrophic boreal lake in Northern Russia. By using high-performance cell sorting, P. bekefii-like cell rosettes were selectively enriched from lake water. The retrieved 16S rRNA gene sequence was nearly identical to those in dozens of metagenomes assembled from freshwater lakes during cyanobacterial blooms and was phylogenetically placed within a large group of environmental sequences originating from various freshwater habitats worldwide. In contrast, 16S rRNA gene sequence similarity to all currently described members of the order Planctomycetales was only 83%–92%. The metagenome assembled for P. bekefii reached 43% genome coverage and showed the potential for degradation of peptides, pectins, and sulfated polysaccharides. Tracing the seasonal dynamics of P. bekefii by Illumina paired-end sequencing of 16S rRNA gene fragments and by fluorescence in situ hybridization revealed that these bacteria only transiently surpass the detection limit, with a characteristic population peak of up to 104 cells ml−1 following cyanobacterial blooms.  相似文献   

12.
1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36–68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate. 2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid‐European lakes at intermediate latitudes with intermediate conductivities, trophic state and temperatures. 3. Large‐sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid‐tolerant species were also occasionally abundant. Small‐sized, benthic‐associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species‐specific preferences for habitat and environmental conditions in the Mid‐European group of lakes. Taxon richness was low in the southern‐most, high‐conductivity lakes as well as in the two northern‐most sub‐arctic lakes. 4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production. 5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and human‐related impacts, when a latitude gradient is used as a climate proxy. Future studies should focus on the interrelationships between latitude and gradients in nutrient concentration and conductivity.  相似文献   

13.
We present a survey on the distribution and habitat range of Polynucleobacter necessarius ssp. asymbioticus (PnecC), a numerically and functionally important taxon in the plankton of freshwater systems. We systematically sampled stagnant freshwater habitats in a heterogeneous 2000 km2 area, together with ecologically different habitats outside this area. In total, 137 lakes, ponds and puddles were investigated, which represent an enormous diversity of habitats differing, e.g. in depth (< 10 cm – 171 m) and pH (3.9–8.5). PnecC bacteria were detected by cultivation‐independent methods in all investigated habitats, and their presence was confirmed by cultivation of strains from selected habitats representing the whole studied ecological range. The determined relative abundance of the subspecies ranged from values close to the detection limit of FISH (0.2%) to 67% (average 14.5%), and the highest observed absolute abundance was 5.3 × 106 cells ml?1. Statistical analyses revealed that the abundance of PnecC bacteria was partially controlled by factors linked to concentrations of humic substances, which support the hypothesis that these bacteria utilize photodegradation products of humic substances. Based on the revealed statistical relationships, an average relative abundance of this subspecies of 20% in global freshwater habitats was extrapolated. Our study provides important implications for the current debate on ubiquity and biogeography in microorganisms.  相似文献   

14.
Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.  相似文献   

15.
1. Lake phytoplankton community structure may be influenced by both internal factors (predation, competition, resource constraints) and external ones, such as dispersal of materials and cells between connected habitats. However, little is known about the importance of cell dispersal for phytoplankton community structure in lakes. 2. We investigated the abundance and dispersal of phytoplankton cells between connected rivers and lakes, and analysed whether similarities in phytoplankton community composition between rivers and lakes were primarily related to cell import rates or to characteristics of the local habitat. We focused on lakes along a gradient of theoretical water retention times (TWRT). Two data sets from Swedish lakes were used; a seasonal study of two connected boreal forest lakes, differing in TWRT, and a multi‐lake study of 13 lakes with a continuous range of TWRTs. 3. Phytoplankton cells were transported and dispersed in all investigated rivers. In the seasonal study, cell import rates and similarities in phytoplankton community composition between the lake and its inlet(s) were much higher in the lake with a shorter TWRT. Phytoplankton community structure in different habitats was associated with total organic carbon (TOC). This indicates that local habitat characteristics may be important in determining lake phytoplankton community composition, even in the presence of substantial cell import. 4. The multi‐lake study also showed a negative relationship between TWRT and similarities in phytoplankton community composition between inlets and lakes. Moreover, similarity in community structure was related to both cell import rates from inlet to lake and differences in habitat characteristics between inlet and lake. However, the variable most strongly correlated with community structure was TOC, indicating that species sorting rather than a mass effect was the most important mechanism underlying the correlation between community structure and retention time. 5. Overall, our data suggest that local habitat characteristics may play a key role in determining community similarity in this set of lakes covering a large range of habitat connectedness. Due to the strong co‐variations between cell dispersal and TOC, it was hard to unequivocally disentangle the different mechanisms; hence, there is a need for further studies of the role of dispersal for phytoplankton community structures.  相似文献   

16.
The influence of salinity and geographical distance on bacterial community composition (BCC) in five freshwater, oligosaline or polysaline lakes located at altitudes higher than 4400 m on the central and southern Tibetan Plateau were investigated using the 16S rRNA gene clone library approach together with multivariate analysis of environmental variables. A total of 10 clone libraries were constructed with two libraries in each lake, one in the epilimnion and the other in the hypolimnion. Geographical distance was not found to impact BCC significantly, but salinity, chl a and lake hydraulic retention time were significant factors influencing the BCC. Bacteria in lakes located on the central and southern Plateau owned the same community composition as that observed from the eastern Tibetan lakes. They were both predominated by Bacteroidetes and Cyanobacteria, had low taxon richness, and similar typical freshwater clusters and distributed characteristics. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

17.
Seasonal changes in environmental conditions have a strong impact on microbial community structure and dynamics in aquatic habitats. To better elucidate the response of bacterial communities to environmental changes, we have measured a large variety of limnetic variables and investigated bacterial community composition (BCC) and dynamics over seven consecutive years between 2003 and 2009 in mesotrophic Lake Tiefwaren (NE Germany). We separated between free-living (FL, >0.2, <5.0?μm) and particle-associated (PA, >5.0?μm) bacteria to account for different bacterial lifestyles and to obtain a higher resolution of the microbial diversity. Changes in BCC were studied by DGGE based on PCR-amplified 16S rRNA gene fragments. Sequencing of DGGE bands revealed that ca. 70?% of all FL bacteria belonged to the Actinobacteria, whereas PA bacteria were dominated by Cyanobacteria (43?%). FL communities were generally less diverse and rather stable over time compared to their PA counterpart. Annual changes in reoccurring seasonal patterns of dominant freshwater bacteria were supported by statistical analyses, which revealed several significant correlations between DGGE profiles and various environmental variables, e.g. temperature and nutrients. Overall, FL bacteria were generally less affected by environmental changes than members of the PA fraction. Close association of PA bacteria with phytoplankton and zooplankton suggests a tight coupling of PA bacteria to organisms of higher trophic levels. Our results indicate substantial differences in bacterial lifestyle of pelagic freshwater bacteria, which are reflected by contrasting seasonal dynamics and relationships to a number of environmental variables.  相似文献   

18.
19.
20.
The viviparous freshwater gastropod Tylomelania (Caenogastropoda: Cerithioidea: Pachychilidae) endemic to the Indonesian island Sulawesi has radiated extensively in two ancient lake systems. We here present the first systematic species-level review of taxa in the five lakes of the Malili lake system, which contains the most diverse and best studied freshwater fauna on Sulawesi. Our results indicate a significantly higher diversity of Tylomelania in these lakes than previously perceived based on morphological evidence for delimiting the taxa. We describe nine new species, thus increasing the number of taxa known from the Malili lakes to 25. Tylomelania species are inhabiting all available substrates in the lakes, and the diversity of habitats is reflected in an unparalleled range of radula types in this closely related group. Several species show a high intraspecific variability in some characters, and their closer investigation will probably lead to the discovery of more cryptic species. As it is, this species flock on Sulawesi is among the largest freshwater mollusc radiations known. Since the Malili lake system also contains other large endemic species flocks of e.g. crustaceans and fishes, it is a major hotspot of freshwater biodiversity in Asia to become a conservation priority. Handling editor: K. Martens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号