首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In our article, only a set of random positions of missing valueswas used for each dataset. However, imputation methods may  相似文献   

2.
Microarray gene expression data often contains multiple missing values due to various reasons. However, most of gene expression data analysis algorithms require complete expression data. Therefore, accurate estimation of the missing values is critical to further data analysis. In this paper, an Iterated Local Least Squares Imputation (ILLSimpute) method is proposed for estimating missing values. Two unique features of ILLSimpute method are: ILLSimpute method does not fix a common number of coherent genes for target genes for estimation purpose, but defines coherent genes as those within a distance threshold to the target genes. Secondly, in ILLSimpute method, estimated values in one iteration are used for missing value estimation in the next iteration and the method terminates after certain iterations or the imputed values converge. Experimental results on six real microarray datasets showed that ILLSimpute method performed at least as well as, and most of the time much better than, five most recent imputation methods.  相似文献   

3.

Background  

Gene expression profiling has become a useful biological resource in recent years, and it plays an important role in a broad range of areas in biology. The raw gene expression data, usually in the form of large matrix, may contain missing values. The downstream analysis methods that postulate complete matrix input are thus not applicable. Several methods have been developed to solve this problem, such as K nearest neighbor impute method, Bayesian principal components analysis impute method, etc. In this paper, we introduce a novel imputing approach based on the Support Vector Regression (SVR) method. The proposed approach utilizes an orthogonal coding input scheme, which makes use of multi-missing values in one row of a certain gene expression profile and imputes the missing value into a much higher dimensional space, to obtain better performance.  相似文献   

4.

Background  

It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.  相似文献   

5.

Background  

Missing values frequently pose problems in gene expression microarray experiments as they can hinder downstream analysis of the datasets. While several missing value imputation approaches are available to the microarray users and new ones are constantly being developed, there is no general consensus on how to choose between the different methods since their performance seems to vary drastically depending on the dataset being used.  相似文献   

6.
MOTIVATION: One important application of gene expression microarray data is classification of samples into categories, such as the type of tumor. The use of microarrays allows simultaneous monitoring of thousands of genes expressions per sample. This ability to measure gene expression en masse has resulted in data with the number of variables p(genes) far exceeding the number of samples N. Standard statistical methodologies in classification and prediction do not work well or even at all when N < p. Modification of existing statistical methodologies or development of new methodologies is needed for the analysis of microarray data. RESULTS: We propose a novel analysis procedure for classifying (predicting) human tumor samples based on microarray gene expressions. This procedure involves dimension reduction using Partial Least Squares (PLS) and classification using Logistic Discrimination (LD) and Quadratic Discriminant Analysis (QDA). We compare PLS to the well known dimension reduction method of Principal Components Analysis (PCA). Under many circumstances PLS proves superior; we illustrate a condition when PCA particularly fails to predict well relative to PLS. The proposed methods were applied to five different microarray data sets involving various human tumor samples: (1) normal versus ovarian tumor; (2) Acute Myeloid Leukemia (AML) versus Acute Lymphoblastic Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma (DLBCLL) versus B-cell Chronic Lymphocytic Leukemia (BCLL); (4) normal versus colon tumor; and (5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus renal samples. Stability of classification results and methods were further assessed by re-randomization studies.  相似文献   

7.
Microarray gene expression data generally suffers from missing value problem due to a variety of experimental reasons. Since the missing data points can adversely affect downstream analysis, many algorithms have been proposed to impute missing values. In this survey, we provide a comprehensive review of existing missing value imputation algorithms, focusing on their underlying algorithmic techniques and how they utilize local or global information from within the data, or their use of domain knowledge during imputation. In addition, we describe how the imputation results can be validated and the different ways to assess the performance of different imputation algorithms, as well as a discussion on some possible future research directions. It is hoped that this review will give the readers a good understanding of the current development in this field and inspire them to come up with the next generation of imputation algorithms.  相似文献   

8.
9.
MOTIVATION: Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. RESULTS: The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. AVAILABILITY: The CMVE software is available upon request from the authors.  相似文献   

10.
Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as accurate as those from the best EMimpute algorithm.  相似文献   

11.
12.
MOTIVATION: Significance analysis of differential expression in DNA microarray data is an important task. Much of the current research is focused on developing improved tests and software tools. The task is difficult not only owing to the high dimensionality of the data (number of genes), but also because of the often non-negligible presence of missing values. There is thus a great need to reliably impute these missing values prior to the statistical analyses. Many imputation methods have been developed for DNA microarray data, but their impact on statistical analyses has not been well studied. In this work we examine how missing values and their imputation affect significance analysis of differential expression. RESULTS: We develop a new imputation method (LinCmb) that is superior to the widely used methods in terms of normalized root mean squared error. Its estimates are the convex combinations of the estimates of existing methods. We find that LinCmb adapts to the structure of the data: If the data are heterogeneous or if there are few missing values, LinCmb puts more weight on local imputation methods; if the data are homogeneous or if there are many missing values, LinCmb puts more weight on global imputation methods. Thus, LinCmb is a useful tool to understand the merits of different imputation methods. We also demonstrate that missing values affect significance analysis. Two datasets, different amounts of missing values, different imputation methods, the standard t-test and the regularized t-test and ANOVA are employed in the simulations. We conclude that good imputation alleviates the impact of missing values and should be an integral part of microarray data analysis. The most competitive methods are LinCmb, GMC and BPCA. Popular imputation schemes such as SVD, row mean, and KNN all exhibit high variance and poor performance. The regularized t-test is less affected by missing values than the standard t-test. AVAILABILITY: Matlab code is available on request from the authors.  相似文献   

13.
14.
Yang  Yang  Xu  Zhuangdi  Song  Dandan 《BMC bioinformatics》2016,17(1):109-116
Missing values are commonly present in microarray data profiles. Instead of discarding genes or samples with incomplete expression level, missing values need to be properly imputed for accurate data analysis. The imputation methods can be roughly categorized as expression level-based and domain knowledge-based. The first type of methods only rely on expression data without the help of external data sources, while the second type incorporates available domain knowledge into expression data to improve imputation accuracy. In recent years, microRNA (miRNA) microarray has been largely developed and used for identifying miRNA biomarkers in complex human disease studies. Similar to mRNA profiles, miRNA expression profiles with missing values can be treated with the existing imputation methods. However, the domain knowledge-based methods are hard to be applied due to the lack of direct functional annotation for miRNAs. With the rapid accumulation of miRNA microarray data, it is increasingly needed to develop domain knowledge-based imputation algorithms specific to miRNA expression profiles to improve the quality of miRNA data analysis. We connect miRNAs with domain knowledge of Gene Ontology (GO) via their target genes, and define miRNA functional similarity based on the semantic similarity of GO terms in GO graphs. A new measure combining miRNA functional similarity and expression similarity is used in the imputation of missing values. The new measure is tested on two miRNA microarray datasets from breast cancer research and achieves improved performance compared with the expression-based method on both datasets. The experimental results demonstrate that the biological domain knowledge can benefit the estimation of missing values in miRNA profiles as well as mRNA profiles. Especially, functional similarity defined by GO terms annotated for the target genes of miRNAs can be useful complementary information for the expression-based method to improve the imputation accuracy of miRNA array data. Our method and data are available to the public upon request.  相似文献   

15.
Missing value imputation for epistatic MAPs   总被引:1,自引:0,他引:1  

Background  

Epistatic miniarray profiling (E-MAPs) is a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. An effective method for imputing interactions would therefore increase the types of possible analysis, as well as increase the potential to identify novel functional interactions between gene pairs. Several methods have been developed to handle missing values in microarray data, but it is unclear how applicable these methods are to E-MAP data because of their pairwise nature and the significantly larger number of missing values. Here we evaluate four alternative imputation strategies, three local (Nearest neighbor-based) and one global (PCA-based), that have been modified to work with symmetric pairwise data.  相似文献   

16.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

17.
Missing value estimation methods for DNA microarrays   总被引:39,自引:0,他引:39  
MOTIVATION: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data. RESULTS: We present a comparative study of several methods for the estimation of missing values in gene microarray data. We implemented and evaluated three methods: a Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest neighbors (KNNimpute), and row average. We evaluated the methods using a variety of parameter settings and over different real data sets, and assessed the robustness of the imputation methods to the amount of missing data over the range of 1--20% missing values. We show that KNNimpute appears to provide a more robust and sensitive method for missing value estimation than SVDimpute, and both SVDimpute and KNNimpute surpass the commonly used row average method (as well as filling missing values with zeros). We report results of the comparative experiments and provide recommendations and tools for accurate estimation of missing microarray data under a variety of conditions.  相似文献   

18.

Background  

Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples.  相似文献   

19.
Improving missing value estimation in microarray data with gene ontology   总被引:3,自引:0,他引:3  
MOTIVATION: Gene expression microarray experiments produce datasets with frequent missing expression values. Accurate estimation of missing values is an important prerequisite for efficient data analysis as many statistical and machine learning techniques either require a complete dataset or their results are significantly dependent on the quality of such estimates. A limitation of the existing estimation methods for microarray data is that they use no external information but the estimation is based solely on the expression data. We hypothesized that utilizing a priori information on functional similarities available from public databases facilitates the missing value estimation. RESULTS: We investigated whether semantic similarity originating from gene ontology (GO) annotations could improve the selection of relevant genes for missing value estimation. The relative contribution of each information source was automatically estimated from the data using an adaptive weight selection procedure. Our experimental results in yeast cDNA microarray datasets indicated that by considering GO information in the k-nearest neighbor algorithm we can enhance its performance considerably, especially when the number of experimental conditions is small and the percentage of missing values is high. The increase of performance was less evident with a more sophisticated estimation method. We conclude that even a small proportion of annotated genes can provide improvements in data quality significant for the eventual interpretation of the microarray experiments. AVAILABILITY: Java and Matlab codes are available on request from the authors. SUPPLEMENTARY MATERIAL: Available online at http://users.utu.fi/jotatu/GOImpute.html.  相似文献   

20.
Differential analysis of DNA microarray gene expression data   总被引:6,自引:0,他引:6  
Here, we review briefly the sources of experimental and biological variance that affect the interpretation of high-dimensional DNA microarray experiments. We discuss methods using a regularized t-test based on a Bayesian statistical framework that allow the identification of differentially regulated genes with a higher level of confidence than a simple t-test when only a few experimental replicates are available. We also describe a computational method for calculating the global false-positive and false-negative levels inherent in a DNA microarray data set. This method provides a probability of differential expression for each gene based on experiment-wide false-positive and -negative levels driven by experimental error and biological variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号