首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene for RsuA, the pseudouridine synthase that converts U516 to pseudouridine in 16S ribosomal RNA of Escherichia coli, has been deleted in strains MG1655 and BL21/DE3. Deletion of this gene resulted in the specific loss of pseudouridine516 in both cell lines, and replacement of the gene in trans on a plasmid restored the pseudouridine. Therefore, rsuA is the only gene in E. coli with the ability to produce a protein capable of forming pseudouridine516. There was no effect on the growth rate of rsuA- MG1655 either in rich or minimal medium at either 24, 37, or 42 degrees C. Plasmid rescue of the BL21/DE3 rsuA- strain using pET15b containing an rsuA gene with aspartate102 replaced by asparagine or threonine demonstrated that neither mutant was active in vivo. This result supports a role for this aspartate, located in a unique GRLD sequence in this gene, at the catalytic center of the synthase. Induction of wild-type and the two mutant synthases in strain BL21/DE3 from genes in pET15b yielded a strong overexpression of all three proteins in approximately equal amounts showing that the mutations did not affect production of the protein in vivo and thus that the lack of activity was not due to a failure to produce a gene product. Aspartate102 is found in a conserved motif present in many pseudouridine synthases. The conservation and distribution of this motif in nature was assessed.  相似文献   

2.
There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.  相似文献   

3.
4.
Escherichia coli pseudouridine synthase RluD makes pseudouridines 1911, 1915, and 1917 in the loop of helix 69 in 23S RNA. These are the most highly conserved ribosomal pseudouridines known. Of 11 pseudouridine synthases in E. coli, only cells lacking RluD have severe growth defects and abnormal ribosomes. We have determined the 2.0 A structure of the catalytic domain of RluD (residues 77-326), the first structure of an RluA family member. The catalytic domain folds into a mainly antiparallel beta-sheet flanked by several loops and helices. A positively charged cleft that presumably binds RNA leads to the conserved Asp 139. The RluD N-terminal S4 domain, connected by a flexible linker, is disordered in our structure. RluD is very similar in both catalytic domain structure and active site arrangement to the pseudouridine synthases RsuA, TruB, and TruA. We identify five sequence motifs, two of which are novel, in the RluA, RsuA, TruB, and TruA families, uniting them as one superfamily. These results strongly suggest that four of the five families of pseudouridine synthases arose by divergent evolution. The RluD structure also provides insight into its multisite specificity.  相似文献   

5.
This laboratory previously showed that truncation of the gene for RluD, the Escherichia coli pseudouridine synthase responsible for synthesis of 23S rRNA pseudouridines 1911, 1915, and 1917, blocks pseudouridine formation and inhibits growth. We now show that RluD mutants at the essential aspartate 139 allow these two functions of RluD to be separated. In vitro, RluD with aspartate 139 replaced by threonine or asparagine is completely inactive. In vivo, the growth defect could be completely restored by transformation of an RluD-inactive strain with plasmids carrying genes for RluD with aspartate 139 replaced by threonine or asparagine. Pseudouridine sequencing of the 23S rRNA from these transformed strains demonstrated the lack of these pseudouridines. Pseudoreversion, which has previously been shown to restore growth without pseudouridine formation by mutation at a distant position on the chromosome, was not responsible because transformation with empty vector under identical conditions did not alter the growth rate.  相似文献   

6.
7.
Modifying RNA enzymes are highly specific for substrate-rRNA or tRNA-and the target position. In Escherichia coli, there are very few multisite acting enzymes, and only one rRNA/tRNA dual-specificity enzyme, pseudouridine synthase RluA, has been identified to date. Among the tRNA-modifying enzymes, the methyltransferase responsible for the m(2)A synthesis at purine 37 in a tRNA set still remains unknown. m(2)A is also present at position 2503 in the peptidyl transferase center of 23S RNA, where it is introduced by RlmN, a radical S-adenosyl-L-methionine (SAM) enzyme. Here, we show that E. coli RlmN is a dual-specificity enzyme that catalyzes methylation of both rRNA and tRNA. The ΔrlmN mutant lacks m(2)A in both RNA types, whereas the expression of recombinant RlmN from a plasmid introduced into this mutant restores tRNA modification. Moreover, RlmN performs m(2)A(37) synthesis in vitro using a tRNA chimera as a substrate. This chimera has also proved useful to characterize some tRNA identity determinants for RlmN and other tRNA modification enzymes. Our data suggest that RlmN works in a late step during tRNA maturation by recognizing a precise 3D structure of tRNA. RlmN inactivation increases the misreading of a UAG stop codon. Since loss of m(2)A(37) from tRNA is expected to produce a hyperaccurate phenotype, we believe that the error-prone phenotype exhibited by the ΔrlmN mutant is due to loss of m(2)A from 23S rRNA and, accordingly, that the m(2)A2503 modification plays a crucial role in the proofreading step occurring at the peptidyl transferase center.  相似文献   

8.
9.
Many different modified nucleotides are found in naturally occurring tRNA, especially in the anticodon region. Their importance for the efficiency of the translational process begins to be well documented. Here we have analyzed the in vivo effect of deleting genes coding for yeast tRNA-modifying enzymes, namely Pus1p, Pus3p, Pus4p, or Trm4p, on termination readthrough and +1 frameshift events. To this end, we have transformed each of the yeast deletion strains with a lacZ-luc dual-reporter vector harboring selected programmed recoding sites. We have found that only deletion of the PUS3 gene, encoding the enzyme that introduces pseudouridines at position 38 or 39 in tRNA, has an effect on the efficiency of the translation process. In this mutant, we have observed a reduced readthrough efficiency of each stop codon by natural nonsense suppressor tRNAs. This effect is solely due to the absence of pseudouridine 38 or 39 in tRNA because the inactive mutant protein Pus3[D151A]p did not restore the level of natural readthrough. Our results also show that absence of pseudouridine 39 in the slippery tRNA(UAG)(Leu) reduces +1 frameshift efficiency. Therefore, the presence of pseudouridine 38 or 39 in the tRNA anticodon arm enhances misreading of certain codons by natural nonsense tRNAs as well as promotes frameshifting on slippery sequences in yeast.  相似文献   

10.
RluA is a dual-specificity enzyme responsible for pseudouridylating 23S rRNA and several tRNAs. The 2.05 A resolution structure of RluA bound to a substrate RNA comprising the anticodon stem loop of tRNA(Phe) reveals that enzyme binding induces a dramatic reorganization of the RNA. Instead of adopting its canonical U turn conformation, the anticodon loop folds into a new structure with a reverse-Hoogsteen base pair and three flipped-out nucleotides. Sequence conservation, the cocrystal structure, and the results of structure-guided mutagenesis suggest that RluA recognizes its substrates indirectly by probing RNA loops for their ability to adopt the reorganized fold. The planar, cationic side chain of an arginine intercalates between the reverse-Hoogsteen base pair and the bottom pair of the anticodon stem, flipping the nucleotide to be modified into the active site of RluA. Sequence and structural comparisons suggest that pseudouridine synthases of the RluA, RsuA, and TruA families employ an equivalent arginine for base flipping.  相似文献   

11.
12.
Mizutani K  Machida Y  Unzai S  Park SY  Tame JR 《Biochemistry》2004,43(15):4454-4463
The most frequent modification of RNA, the conversion of uridine bases to pseudouridines, is found in all living organisms and often in highly conserved locations in ribosomal and transfer RNA. RluC and RluD are homologous enzymes which each convert three specific uridine bases in Escherichia coli ribosomal 23S RNA to pseudouridine: bases 955, 2504, and 2580 in the case of RluC and 1911, 1915, and 1917 in the case of RluD. Both have an N-terminal S4 RNA binding domain. While the loss of RluC has little phenotypic effect, loss of RluD results in a much reduced growth rate. We have determined the crystal structures of the catalytic domain of RluC, and full-length RluD. The S4 domain of RluD appears to be highly flexible or unfolded and is completely invisible in the electron density map. Despite the conserved topology shared by the two proteins, the surface shape and charge distribution are very different. The models suggest significant differences in substrate binding by different pseudouridine synthases.  相似文献   

13.
Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec(-1). In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (k(Ψ)) by TruB was determined to be 0.5 sec(-1). This rate constant is similar to the k(cat) obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec(-1), respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism.  相似文献   

14.
Tedin K  Norel F 《Journal of bacteriology》2001,183(21):6184-6196
The growth recovery of Escherichia coli K-12 and Salmonella enterica serovar Typhimurium DeltarelA mutants were compared after nutritional downshifts requiring derepression of the branched-chain amino acid pathways. Because wild-type E. coli K-12 and S. enterica serovar Typhimurium LT2 strains are defective in the expression of the genes encoding the branch point acetohydroxy acid synthetase II (ilvGM) and III (ilvIH) isozymes, respectively, DeltarelA derivatives corrected for these mutations were also examined. Results indicate that reduced expression of the known global regulatory factors involved in branched-chain amino acid biosynthesis cannot completely explain the observed growth recovery defects of the DeltarelA strains. In the E. coli K-12 MG1655 DeltarelA background, correction of the preexisting rph-1 allele which causes pyrimidine limitations resulted in complete loss of growth recovery. S. enterica serovar Typhimurium LT2 DeltarelA strains were fully complemented by elevated basal ppGpp levels in an S. enterica serovar Typhimurium LT2 DeltarelA spoT1 mutant or in a strain harboring an RNA polymerase mutation conferring a reduced RNA chain elongation rate. The results are best explained by a dependence on the basal levels of ppGpp, which are determined by relA-dependent changes in tRNA synthesis resulting from amino acid starvations. Expression of the branched-chain amino acid operons is suggested to require changes in the RNA chain elongation rate of the RNA polymerase, which can be achieved either by elevation of the basal ppGpp levels or, in the case of the E. coli K-12 MG1655 strain, through pyrimidine limitations which partially compensate for reduced ppGpp levels. Roles for ppGpp in branched-chain amino acid biosynthesis are discussed in terms of effects on the synthesis of known global regulatory proteins and current models for the control of global RNA synthesis by ppGpp.  相似文献   

15.
Ero R  Peil L  Liiv A  Remme J 《RNA (New York, N.Y.)》2008,14(10):2223-2233
In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem–loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m3Ψ) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Ψ1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m3Ψ1915 is the only methylated pseudouridine in bacteria described to date.  相似文献   

16.
Pseudouridine modifications in helix 69 (H69) of 23S ribosomal RNA are highly conserved among all organisms. H69 associates with helix 44 of 16S rRNA to form bridge B2a, which plays a vital role in bridging the two ribosomal subunits and stabilizing the ribosome. The three pseudouridines in H69 were shown earlier to play an important role in 50S subunit assembly and in its association with the 30S subunit. In Escherichia coli, these three modifications are made by the pseudouridine synthase, RluD. Previous work showed that RluD is required for normal ribosomal assembly and function, and that it is the only pseudouridine synthase required for normal growth in E. coli. Here, we show that RluD is far more efficient in modifying H69 in structured 50S subunits, compared to free or synthetic 23S rRNA. Based on this observation, we suggest that pseudouridine modifications in H69 are made late in the assembly of 23S rRNA into mature 50S subunits. This is the first reported observation of a pseudouridine synthase being able to modify a highly structured ribonucleoprotein particle, and it may be an important late step in the maturation of 50S ribosomal subunits.  相似文献   

17.
18.
19.
Yeast RNA:pseudouridine synthetase Pus1 catalyzes the formation of pseudouridines in tRNAs. We report here the quaternary structure of purified recombinant Pus1 in solution. At low concentration, in the absence of tRNA, Pus1 oligomerizes while at high concentration it precipitates. This oligomerization/aggregation can be prevented by addition of dodecyl-beta-D-maltoside or of yeast tRNA(Phe). The detergent does not significantly interfere with substrate binding or with activity of Pus1. The stoichiometry of the Pus1/tRNA(Phe) complex is 1/1. We conclude that the detergent covers an hydrophobic region of the RNA binding pocket responsible for Pus1 aggregation.  相似文献   

20.
Leppik M  Peil L  Kipper K  Liiv A  Remme J 《The FEBS journal》2007,274(21):5759-5766
Pseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli. We have analyzed substrate specificity of RluD in vivo. Mutational analyses have revealed: (a) RluD isomerizes uridine in vivo only at positions 1911, 1915, and 1917, regardless of the presence of uridine at other positions in the loop of helix 69 of 23S rRNA variants; (b) substitution of one U by C has no effect on the conversion of others (i.e. formation of pseudouridines at positions 1911, 1915, and 1917 are independent of each other); (c) A1916 is the only position in the loop of helix 69, where mutations affect the RluD specific pseudouridine formation. Pseudouridines were determined in the ribosomal particles from a ribosomal large subunit defective strain (RNA helicase DeaD(-)). An absence of pseudouridines in the assembly precursor particles suggests that RluD directed isomerization of uridines occurs as a late step during the assembly of the large ribosomal subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号