首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell cycle inhibitor p15(INK4b) is frequently inactivated by homozygous deletion together with p16(INK4a) and p19(ARF) in some types of tumors. Although the tumor suppressor capability of p15(INK4b) is still questioned, it has been found to be specifically inactivated by hypermethylation in hematopoietic malignancies in the absence of p16(INK4a) alterations. Here we show that, in vitro, p15(INK4b) is a strong inhibitor of cellular transformation by Ras. Surprisingly, p15(INK4b) is induced in cultured cells by oncogenic Ras to an extent similar to that of p16(INK4a), and their expression is associated with premature G(1) arrest and senescence. Ras-dependent induction of these two INK4 genes is mediated mainly by the Raf-Mek-Erk pathway. Studies with activated and dominant negative forms of Ras effectors indicate that the Raf-Mek-Erk pathway is essential for induction of both the p15(INK4b) and p16(INK4a) promoters, although other Ras effector pathways can collaborate, giving rise to a stronger response. Our results indicate that p15(INK4b), by itself, is able to stop cell transformation by Ras and other oncogenes such as Rgr (a new oncogene member of the Ral-GDS family, whose action is mediated through Ras). In fact, embryonic fibroblasts isolated from p15(INK4b) knockout mice are susceptible to transformation by the Ras or Rgr oncogene whereas wild-type embryonic fibroblasts are not. Similarly, p15(INK4b)-deficient mouse embryo fibroblasts are more sensitive than wild-type cells to transformation by a combination of the Rgr and E1A oncogenes. The cell cycle inhibitor p15(INK4b) is therefore involved, at least in some cell types, in the tumor suppressor activity triggered after inappropriate oncogenic Ras activation in the cell.  相似文献   

2.
3.
4.
Rb independent inhibition of cell growth by p15(INK4B).   总被引:2,自引:0,他引:2  
The INK4 cyclin dependent kinase inhibitors (CDKI), such as p15(INK4B) and p16(INK4A), block cell cycle progression from G to S phase. This is mediated by inhibition of phosphorylation of proteins, including the retinoblastoma susceptibility protein (Rb), by cyclin dependent kinases. Ectopic over-expression of the p16(INK4A) CDKI can inhibit growth of cell lines depending on Rb status. Cell lines lacking Rb, with few exceptions, are resistant to growth inhibition by p16(INK4A). The effects of ectopic over-expression of p15(INK4B) in cell lines with and without wild type Rb were examined by measuring cell recovery. Proliferation was inhibited in cells lacking Rb as well as in cells with wild type Rb expression. Experiments analyzing the effectiveness of chimeric p15(INK4B)/p16(INK4A) proteins indicated that the Rb independent growth inhibition required N-terminal residues of p15(INK4B). Linker insertion mutation of p15(INK4B) showed that the inhibition was dependent on intact ankyrin structures. Double staining flow cytometry found that the growth inhibition correlated with a decrease in cells in G2/M phases of the cell cycle. These findings are consistent with Rb independent inhibition of the progression from G1 to S caused by overexpression of p15(INK4B).  相似文献   

5.
6.
Previous studies have shown that the p16(INK4a) tumor suppressor gene is inactivated in up to 98% of human pancreatic cancer specimens and 83% of oral squamous cell carcinomas. Inactivation of the related p15(INK4b) gene has also been identified in a number of tumors and cell lines, however, its role as an independent tumor suppressor remains to be elucidated. Chemically-induced tumors in the Syrian Golden hamster (Mesocricetus auratus) have been shown to be excellent representative models for the comparative development and progression of a number of human malignancies. The purpose of this study was to determine the importance of the p16(INK4a) and p15(INK4b) genes in two experimental hamster models for human pancreatic and oral carcinogenesis. First, hamster p16(INK4a) and p15(INK4b) cDNAs were cloned and sequenced. The hamster p16(INK4a) cDNA open reading frame (ORF) shares 78%, 80%, and 81% identity with the human, mouse, and rat p16(INK4a) sequences, respectively. Similarly, the hamster p15(INK4b) cDNA ORF shares 82% and 89% sequence identity with human and mouse p15(INK4b), respectively. Second, a deletion analysis of hamster p16(INK4a) and p15(INK4b) genes was performed for several tumorigenic and non-tumorigenic hamster cell lines and revealed that both p16(INK4a) and p15(INK4b) were homozygously deleted in a cheek pouch carcinoma cell line (HCPC) and two pancreatic adenocarcinoma cell lines (KL5B, H2T), but not in tissue matched, non-tumorigenic cheek pouch (POT2) or pancreatic (KL5N) cell lines. These data strongly suggest that homozygous deletion of the p16(INK4a) and p15(INK4b) genes plays a prominent role in hamster pancreatic and oral tumorigenesis, as has been well established in correlative studies in comparable human tumors. Furthermore, this study supports the comparative importance of the hamster pancreatic and cheek pouch models of carcinogenesis in subsequent mechanistic-, therapeutic-, and preventive-based studies aimed at providing important translational data applicable to pancreatic adenocarcinoma and oral squamous cell carcinoma in humans.  相似文献   

7.
Entry of quiescent cells into the cell cycle is driven by the cyclin D-dependent kinases Cdk4 and Cdk6. These kinases are negatively regulated by the INK4 cell cycle inhibitors. We report the generation of mice defective in P15(INK4b) and P18(INK4c). Ablation of these genes, either alone or in combination, does not abrogate cell contact inhibition or senescence of mouse embryo fibroblasts in culture. However, loss of P15(INK4b), but not of P18(INK4c), confers proliferative advantage to these cells and makes them more sensitive to transformation by H-ras oncogenes. In vivo, ablation of P15(INK4b) and P18(INK4c) genes results in lymphoproliferative disorders and tumor formation. Mice lacking P18(INK4c) have deregulated epithelial cell growth leading to the formation of cysts, mostly in the cortical region of the kidneys and the mammary epithelium. Loss of both P15(INK4b) and P18(INK4c) does not result in significantly distinct phenotypic manifestations except for the appearance of cysts in additional tissues. These results indicate that P15(INK4b) and P18(IKN4c) are tumor suppressor proteins that act in different cellular lineages and/or pathways with limited compensatory roles.  相似文献   

8.
Cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.  相似文献   

9.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

10.
The p16(INK4a)-Rb tumour suppressor pathway is required for the initiation and maintenance of cellular senescence, a state of permanent growth arrest that acts as a natural barrier against cancer progression. Senescence can be overcome if the pathway is not fully engaged, and this may occur when p16(INK4a) is inactivated. p16(INK4a) is frequently altered in human cancer and germline mutations affecting p16(INK4a) have been linked to melanoma susceptibility. To characterize the functions of melanoma-associated p16(INK4a) mutations, in terms of promoting proliferative arrest and initiating senescence, we utilized an inducible expression system in a melanoma cell model. We show that wild-type p16(INK4a) promotes rapid cell cycle arrest that leads to a senescence programme characterized by the appearance of chromatin foci, activation of acidic beta-galactosidase activity, p53 independence and Rb dependence. Accumulation of wild-type p16(INK4a) also promoted cell enlargement and extensive vacuolization independent of Rb status. In contrast, the highly penetrant p16(INK4a) variants, R24P and A36P failed to arrest cell proliferation and did not initiate senescence. We also show that overexpression of CDK4, or its homologue CDK6, but not the downstream kinase, CDK2, inhibited the ability of wild-type p16(INK4a) to promote cell cycle arrest and senescence. Our data provide the first evidence that p16(INK4a) can initiate a CDK4/6-dependent autonomous senescence programme that is disabled by inherited melanoma-associated mutations.  相似文献   

11.
Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16(INK4a) and another cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16(INK4a). Cells induced to senesce by ectopic p16(INK4a) expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16(INK4a) by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16(INK4a) in suppressing the SASP. These findings suggest that p16(INK4a)-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16(INK4a) activation or senescence per se, but rather is a damage response that is separable from the growth arrest.  相似文献   

12.
The molecular mechanisms that lead to tubular atrophy, capillary loss, and fibrosis following acute kidney injury are not very clear but may involve cell cycle inhibition by increased expression of cyclin kinase inhibitors. The INK4a/ARF locus encodes overlapping genes for two proteins, a cyclin kinase inhibitor, p16(INK4a), and a p53 stabilizer, p19(ARF), from independent promoters. To determine if decreased INK4a gene expression results in improved kidney regeneration, INK4a knockout (KO) and wild-type (WT) mice were subjected to ischemia-reperfusion injury (IRI). p16(INK4a) and p19(ARF) levels were increased markedly in WT mice at 1-28 days after injury. Kidneys were examined to determine the localization and levels of p16(INK4a), apoptosis, cell proliferation, and capillary rarefaction. KO mice displayed decreased tubular cell apoptosis, increased cell proliferation, and lower creatinine levels after injury. KO mice had significantly higher capillary density compared with WT mice at 14-42 days after IRI. Plasma granulocyte colony-stimulating factor (G-CSF) increased after ischemia in both WT and KO mice and was elevated markedly in KO compared with WT mice. KO kidney digests contained higher counts of Gr-1(+)/Cd11b(+) myeloid cells by flow cytometry. KO mice treated with a Gr-1-depleting antibody displayed reduced vascular endothelial growth factor mRNA, plasma G-CSF, and capillary density, and an increase in serum creatinine and medullary myofibroblasts, compared with untreated KO mice 14 days after ischemia. The anti-angiogenic effect of Gr-1 depletion in KO mice was confirmed by Matrigel angiogenesis assays. These results suggest that the absence of p16(INK4a) and p19(ARF) following IRI has a protective effect on the kidney through improved epithelial and microvascular repair, in part by enhancing the mobilization of myeloid cells into the kidney.  相似文献   

13.
14.
The regulation of INK4/ARF in cancer and aging   总被引:23,自引:0,他引:23  
Kim WY  Sharpless NE 《Cell》2006,127(2):265-275
Loss of the INK4a/ARF/INK4b locus on chromosome 9p21 is among the most frequent cytogenetic events in human cancer. The products of the locus--p15(INK4b), p16(INK4a), and ARF--play widespread and independent roles in tumor suppression. Recent data also suggest that expression of p16(INK4a) induces an age-dependent decrease in the proliferative capacity of certain tissue-specific stem cells and unipotent progenitors. Here, we discuss the regulation and role of p16(INK4a), ARF, and p15(INK4b) in cancer and aging.  相似文献   

15.
ECRG1 is a novel candidate of tumor suppressor gene identified from human esophagus. To study the biological role of ECRG1 gene, we performed a GAL4-based yeast two-hybrid screen of a human fetal liver cDNA library. Using the ECRG1 cDNA as bait, we identified two putative clones as associated proteins, Miz-1 and FLNA (Filamin A). The interaction of ECRG1 and Miz-1 was confirmed by glutathione-S-transferase (GST)-pull-down assays in vitro and co-immunoprecipitation experiments in vivo. ECRG1 was co-localized with Miz-1 in nucleus, as shown by confocal microscopy. Transfection of ECRG1 gene into the esophageal cancer (EC) cells inhibited cell proliferation and induced G1 phase arrest of cell cycle. In the co-transfection of ECRG1 and Miz-1 assays, we found inhibition of cell proliferation and G1/S phase in EC cells, but the levels of cell proliferation inhibition and G1/S phase arrest were more strongly compared with the transfection of ECRG1 or Miz-1 alone. In addition, the interaction of ECRG1 and Miz-1 could induce expression of P15(INK4b) gene in esophageal cancer 9706 (EC9706) cells. However, the transfection of ECRG1 or Miz-1 alone was not revealed the expressions of P15(INK4b) gene. When antisense ECRG1 interdicted expression of endogenous ECRG1 in Balb/c-3T3 cells, Transfection of Miz-1 couldn't induce P15(INK4b) expression. The results provide evidences that ECRG1 and Miz-1 in EC cells may be acting as a co-functional protein associated with regulation of cell cycle and induction of P15(INK4b) expression. It suggests that ECRG1 may inhibit tumor cell growth by affecting cell cycle, and that expression of P15(INK4b) may be likely to enhance G1 cell cycle arrest during the interaction of ECRG1 and Miz-1. The physical interaction of ECRG1 and Miz-1 may play an important role in carcinogenesis of EC.  相似文献   

16.
Hepatocyte growth factor (HGF) has an anti-proliferative effect on many types of tumor cell lines and tumors in vivo. We found previously that inhibition of HGF-induced proliferation in HepG2 hepatoma cells is caused by cell cycle arrest at G1 through a high intensity ERK signal, which represses Cdk2 activity. To examine further the mechanisms of G1 arrest by HGF, we analyzed the Cdk inhibitor p16(INK4a), which has an anti-proliferative function through cell cycle arrest at G1. We found that HGF treatment drastically increased endogenous p16 levels. Knockdown of p16 with small interfering RNA reversed the arrest, indicating that the induction of p16 is required for G1 arrest by HGF. Analysis of the promoter of the human p16 gene identified the proximal Ets-binding site as a responsive element for HGF, and this responded to the high intensity ERK signal. HGF treatment of the cells led to a redistribution of p21(CIP1) and p27(KIP1) from Cdk4 to Cdk2. The redistribution was blocked by the knockdown of p16 with small interfering RNA, which restored the Cdk2 activity repressed by HGF, demonstrating the requirement of p16 induction for the redistribution and eventual repression of Cdk2 activity. Our results reveal a signaling pathway for G1 arrest induced by HGF.  相似文献   

17.
Fåhraeus R  Lane DP 《The EMBO journal》1999,18(8):2106-2118
Expression of full-length p16(INK4a) blocks alphavbeta3 integrin-dependent cell spreading on vitronectin but not collagen IV. Similarly, G1-associated cell cycle kinases (CDK) inhibitory (CKI) synthetic peptides derived from p16(INK4a), p18(INK4c) and p21(Cip1/Waf1), which can be delivered directly into cells from the tissue culture medium, do not affect non-alphavbeta3-dependent spreading on collagen IV, laminin and fibronectin at concentrations that inhibit cell cycle progression in late G1. The alphavbeta3 heterodimer remains intact after CKI peptide treatment but is immediately dissociated from the focal adhesion contacts. Treatment with phorbol 12-myristate 13-acetate (PMA) allows alphavbeta3 to locate to the focal adhesion contacts and the cells to spread on vitronectin in the presence of CKI peptides. The cdk6 protein is found to suppress p16(INK4a)-mediated inhibition of spreading and is also shown to localize to the ruffling edge of spreading cells, indicating a function for cdk6 in controlling matrix-dependent cell spreading. These results demonstrate a novel G1 CDK-associated integrin regulatory pathway that acts upstream of alphavbeta3-dependent activation of PKC as well as a novel function for the p16(INK4a) tumour suppressor protein in regulating matrix-dependent cell migration.  相似文献   

18.
为探索三氟拉嗪(trifluoperazine, TFP)抗肿瘤作用机制,对胃癌BGC-823细胞进 行TFP(5、10 μmol/L)处理后,利用计数法、BrdU脉冲标记法、Western印迹等方法从细胞形态、细胞增殖、S期细胞百分比以及相关因子表达水平等方面进行分析. 结果显示,TFP处理后,细胞形态发生明显改变,细胞增殖受到明显抑制且呈时间计量 效应关系;S期细胞比例下降;p16INK4a表达水平升高.为进一步研究TFP诱导 p16INK4a表达的分子机制,本实验采用插入p16INK4a启动子片段及荧光素酶报告系统 的载体pGL3-Basic-p16INK4a(-967~-165 bp),研究了TFP在转录水平对p16INK4a启 动子活性的影响.结果表明, TFP能够提高p16INK4a的启动子活性.上述结果提示,TFP 通过诱导p16INK4a表达抑制BGC-823细胞增殖.  相似文献   

19.
Indole-3-carbinol (I3C) is a naturally occurring compound found in vegetables such as broccoli and cauliflower, and has been shown to arrest human tumor cells in the G1 phase of the cell cycle. However, the molecular mechanism responsible for this effect has not been sufficiently elucidated. We report here that I3C activates the cyclin-dependent kinase (CDK) inhibitor p15INK4b gene through its promoter, accompanied by cell growth inhibition in HaCaT cells. Treatment with I3C almost did not affect the expressions of the other CDK inhibitors such as p19INK4d, p21WAF1 and p27Kip1. These results suggest that p15INK4b is an important molecular target of I3C among CDK inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号