首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of DREBs in regulation of abiotic stress responses in plants   总被引:8,自引:0,他引:8  
  相似文献   

2.
Hirschi KD 《The Plant cell》1999,11(11):2113-2122
Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses.  相似文献   

3.
DREB是植物中重要的转录因子,调控一系列非生物胁迫相关基因的表达,增强植物抵抗环境胁迫的能力.同时,当植物受到逆境胁迫时,植物体内的酶和激素都会发生变化,从而影响一系列的生理活动或生化变化来产生抵御胁迫的适应能力.近些年来,研究者们发现DREB与植物激素之间关系密切,从植物激素角度入手研究DREB的功能逐渐成为热点.就逆境胁迫下DREB转录因子与激素之间的相互作用进行阐述.  相似文献   

4.
5.
Pan Z  Zhao Y  Zheng Y  Liu J  Jiang X  Guo Y 《遗传学报》2012,39(5):225-235
It is established that different stresses cause signal-specific changes in cellular Ca2+ level,which function as messengers in modulating diverse physiological processes.These calcium signals are important for stress adaptation.Though numbers of downstream components of calcium signal cascades have been identified,upstream events in calcium signal remain elusive,specifically components required for calcium signal generation due to the lack of high-throughput genetic assay.Here,we report the development of an easy and efficient method in a forward genetic screen for Ca2+ signals-deficient mutants in Arabidopsis thaliana.Using this method,121 mutants with disordered NaCl- and H2O2-induced Ca2+ signals are isolated.  相似文献   

6.
7.
Jammes F  Hu HC  Villiers F  Bouten R  Kwak JM 《The FEBS journal》2011,278(22):4262-4276
Calcium signal transduction is a central mechanism by which plants sense and respond to endogenous and environmental stimuli. Cytosolic Ca(2+) elevation is achieved via two cellular pathways, Ca(2+) influx through Ca(2+) channels in the plasma membrane and Ca(2+) release from intracellular Ca(2+) stores. Because of the significance of Ca(2+) channels in cellular signaling, interaction with the environment and developmental processes in plants, a great deal of effort has been invested in recent years with regard to these important membrane proteins. Because of limited space, in this review we focus on recent findings giving insight into both the molecular identity and physiological function of channels that have been suggested to be responsible for the elevation in cytosolic Ca(2+) level, including cyclic nucleotide gated channels, glutamate receptor homologs, two-pore channels and mechanosensitive Ca(2+) -permeable channels. We provide an overview of the regulation of these Ca(2+) channels and their physiological roles and discuss remaining questions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this N-terminus, show CAX1-mediated Ca(2+)/H(+) antiport activity. Furthermore, transgenic plants expressing sCAX1 display increased Ca(2+) accumulation and heightened activity of vacuolar Ca(2+)/H(+) antiport. Here the properties of N-terminal CAX1 variants in plants and yeast expression systems are compared and contrasted to determine if autoinhibition of CAX1 is occurring in planta. Initially, using ionome analysis, it has been demonstrated that only yeast cells expressing activated CAX1 transporters have altered total calcium content and fluctuations in zinc and nickel. Tobacco plants expressing activated CAX1 variants displayed hypersensitivity to ion imbalances, increased calcium accumulation, heightened concentrations of other mineral nutrients such as potassium, magnesium and manganese, and increased activity of tonoplast-enriched Ca(2+)/H(+) transport. Despite high in planta gene expression, CAX1 and N-terminal variants of CAX1 which were not active in yeast, displayed none of the aforementioned phenotypes. Although several plant transporters appear to contain N-terminal autoinhibitory domains, this work is the first to document clearly N-terminal-dependent regulation of a Ca(2+) transporter in transgenic plants. Engineering the autoinhibitory domain thus provides a strategy to enhance transport function to affect agronomic traits.  相似文献   

17.
18.
19.
Although the 3D structure of the Ca(2+)-bound CaM (Ca(2+)/CaM) complex with the antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7), has been resolved, the dynamic changes in Ca(2+)/CaM structure upon interaction with W-7 are still unknown. We investigated time- and temperature-dependent dynamic changes in Ca(2+)/CaM interaction with W-7 in physiological conditions using one- and two-dimensional Fourier-transformed infrared spectroscopy (2D-IR). We observed changes in the α-helix secondary structure of Ca(2+)/CaM when complexed with W-7 at a molar ratio of 1:2, but not at higher molar ratios (between 1:2 and 1:5). Kinetic studies revealed that, during the initial 125s at 25°C, Ca(2+)/CaM underwent formation of secondary coil and turn structures upon binding to W-7. Variations in temperature that induced significant changes in the structure of the Ca(2+)/CaM complex failed to do so when Ca(2+)/CaM was complexed with W-7. We concluded that W-7 induced stepwise conformational changes in Ca(2+)/CaM that resulted in a rigidification of the complex and its inability to interact with target proteins and/or polypeptides.  相似文献   

20.
Thr(286) autophosphorylation is important for the role of alphaCaMKII in learning and memory. Phospho-Thr(286)-alphaCaMKII has been described to have two types of activity: Ca(2+)-independent partial activity and Ca(2+)/calmodulin-activated full activity. We investigated the mechanism of switching between the two activities in order to relate them to the physiological functioning of alphaCaMKII. Using a fluorometric coupled enzyme assay and smooth muscle myosin light chain (MLC) as substrate, we found that (1) Ca(2+)-independent activity of phospho-Thr(286)-alphaCaMKII represents 5.0 (+/-3.7)% of the activity measured in the presence of optimal concentrations of Ca(2+) and calmodulin and (2) Ca(2+) in the presence of calmodulin activates the enzyme with a K(m) of 137 (+/-56) nM and a Hill coefficient n = 1.8 (+/-0.3). In contrast, unphosphorylated alphaCaMKII has a K(m) for Ca(2+) in the presence of calmodulin of 425 (+/-119) nM and a Hill coefficient n = 5.4 (+/-0.4). Thus, the activity of phospho-Thr(286)-alphaCaMKII is essentially Ca(2+)/calmodulin dependent with MLC as substrate. In physiological terms, our data suggest that alphaCaMKII is only activated in stimulated neurones whereas Ca(2+)/calmodulin activation of phospho-Thr(286)-alphaCaMKII can occur in resting cells (approximately 100 nM [Ca(2+)]). Stopped-flow experiments using Ca(2+)/TA-cal [Ca(2+)/2-chloro-(epsilon-amino-Lys(75))-[6-[4-(N,N-diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin] showed that at 100 nM [Ca(2+)] partially Ca(2+)-saturated Ca(2+)/cal.phospho-Thr(286)-alphaCaMKII complexes existed. These are likely to account for the activity of the phospho-Thr(286)-alphaCaMKII enzyme at resting [Ca(2+)]. Ca(2+) dissociation measurements by a fluorescent Ca(2+) chelator revealed that the limiting Ca(2+) dissociation rate constants were 1.5 s(-1) from the Ca(2+)/cal.alphaCaMKII and 0.023 s(-1) from the Ca(2+)/cal.phospho-Thr(286)-alphaCaMKII complex, accounting for the differences in the Ca(2+) sensitivities of the Ca(2+)/cal.alphaCaMKII and Ca(2+)/cal.phospho-Thr(286)-alphaCaMKII enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号