首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction Up-regulation of some chemokine receptors on tumor cells is associated with increased metastatic potential. In this respect, limited information is available on chemokine receptor in human neuroblastoma (NB). Objects Purpose of the study was to identify chemokines/chemokine receptors involved in bone marrow (BM) localization of metastatic NB cells in view of the development of targeted therapeutic strategies. CD45 metastatic NB cells were isolated from the BM of six patients by immunomagnetic bead manipulation. Some experiments were carried out using a panel of human neuroblastoma cell lines (GI-ME-N, GI-LI-N, LAN-5, HTLA-230, SH-SY-5Y and IMR-32). Immunophenotypic analyses were performed by flow cytometry. Cell migration assays were carried out using transwell systems. Calcium ion mobilization, chemokine receptor internalization and cell proliferation were investigated by flow cytometry. Results In all BM samples, CXCR5 was expressed by the majority of primary neuroblasts and mediated their chemotaxis in response to CXCL13. Primary metastatic NB cells from all BM samples expressed CXCR6, but were not attracted by soluble CXCL16. Studies performed with two CXCR6+ NB cell lines showed that the mechanism whereby neuroblasts did not migrate to CXCL16 was likely related to defective calcium ion mobilization. Conclusions CXCR5 is the first chemokine receptor so far identified able to attract in vitro primary metastatic NB cells. CXCR6 may be involved in retention of metastatic neuroblasts in the BM through interaction with CXCL16 expressing stromal cells in the absence of signal transduction.  相似文献   

2.
3.
4.
5.

Background  

Neuroblastic tumors (NBT) derive from neural crest stem cells (NCSC). Histologically, NBT are composed by neuroblasts and Schwannian cells. In culture, neuroblastic (N-), substrate-adherent (S-) and intermediate phenotype (I-) cell subtypes arise spontaneously.  相似文献   

6.
The homing of hemopoietic stem cells to the bone marrow is mediated by specific interactions occurring between CXCR4, which is expressed on hemopoietic stem cells, and its ligand, stromal cell-derived factor-1 (SDF-1), a CXC chemokine secreted by bone marrow stromal cells. In the present study we evaluated the possibility that neuroblastoma cells use a mechanism similar to that used by hemopoietic stem cells to home to the bone marrow and adhere to bone marrow stromal cells. Our study suggests that CXCR4 expression may be a general characteristic of neuroblastoma cells. SH-SY5Y neuroblastoma cells express not only CXCR4, but also its ligand, SDF-1. CXCR4 expression on SH-SY5Y neuroblastoma cells is tightly regulated by tumor cell-derived SDF-1, as demonstrated by the ability of neutralizing Abs against human SDF-1alpha to up-regulate CXCR4 expression on the tumor cells. The reduction in CXCR4 expression following short term exposure to recombinant human SDF-1alpha can be recovered as a result of de novo receptor synthesis. Recombinant human SDF-1alpha induces the migration of CXCR4-expressing SH-SY5Y neuroblastoma cells in CXCR4- and heterotrimeric G protein-dependent manners. Furthermore, SH-SY5Y cells interact at multiple levels with bone marrow components, as evidenced by the fact that bone marrow-derived constituents promote SH-SY5Y cell migration, adhesion to bone marrow stromal cells, and proliferation. These results suggest that SH-SY5Y neuroblastoma cells are equipped with adequate machinery to support their homing to the bone marrow. Therefore, the ability of neuroblastoma tumors to preferentially form metastases in the bone marrow may be influenced by a set of complex CXCR4-SDF-1 interactions.  相似文献   

7.
Accumulating evidence indicates that regulatory T (Treg) cells control development of various diseases both systemically and locally. However, molecular mechanisms involved in Treg cell homing remain elusive. We have shown previously that alphabetaTCR(+)CD3(+)CD4(-)CD8(-) double-negative (DN) Treg cells selectively accumulate in tolerant allografts to maintain localized immune regulation. However, the molecular mechanism leading to the accumulation of DN Treg cells in tolerant grafts was not known. Our cDNA microarray analysis revealed significant up-regulation of chemokine receptor CXCR5 mRNA in DN Treg clones compared with nonregulatory clones. In this study, we examined the importance of CXCR5 in mediating DN Treg migration. Compared with CD4 and CD8 T cells, both primary DN Treg cells and clones constitutively express high levels of CXCR5 protein, enabling them to migrate toward increasing CXCL13 gradients in vitro. After infusion into recipient mice, CXCR5(+) DN Treg clones, but not their CXCR5(-) mutants, preferentially accumulated in cardiac allografts and could prevent graft rejection. Furthermore, we found that allogeneic cardiac allografts express high levels of CXCL13 mRNA compared with either recipient native hearts or nontransplanted donor hearts. Ab neutralization of CXCL13 abrogated DN Treg cell migration in vitro and prevented in vivo homing of DN Treg clones into allografts. These data demonstrate that DN Treg cells preferentially express CXCR5, and interaction of this chemokine receptor with its ligand CXCL13 plays an important role in DN Treg cell migration both in vitro and in vivo.  相似文献   

8.
Follicular dendritic cells (FDCs) up-regulate the chemokine receptor CXCR4 on CD4 T cells, and a major subpopulation of germinal center (GC) T cells (CD4(+)CD57(+)), which are adjacent to FDCs in vivo, expresses high levels of CXCR4. We therefore reasoned that GC T cells would actively migrate to stromal cell-derived factor-1 (CXCL12), the CXCR4 ligand, and tested this using Transwell migration assays with GC T cells and other CD4 T cells (CD57(-)) that expressed much lower levels of CXCR4. Unexpectedly, GC T cells were virtually nonresponsive to CXCL12, whereas CD57(-)CD4 T cells migrated efficiently despite reduced CXCR4 expression. In contrast, GC T cells efficiently migrated to B cell chemoattractant-1/CXCL13 and FDC supernatant, which contained CXCL13 produced by FDCs. Importantly, GC T cell nonresponsiveness to CXCL12 correlated with high ex vivo expression of regulator of G protein signaling (RGS), RGS13 and RGS16, mRNA and expression of protein in vivo. Furthermore, FDCs up-regulated both RGS13 and RGS16 mRNA expression in non-GC T cells, resulting in their impaired migration to CXCL12. Finally, GC T cells down-regulated RGS13 and RGS16 expression in the absence of FDCs and regained migratory competence to CXCL12. Although GC T cells express high levels of CXCR4, signaling through this receptor appears to be specifically inhibited by FDC-mediated expression of RGS13 and RGS16. Thus, FDCs appear to directly affect GC T cell migration within lymphoid follicles.  相似文献   

9.
The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells   总被引:10,自引:0,他引:10  
Wu X  Li DJ  Yuan MM  Zhu Y  Wang MY 《Biology of reproduction》2004,70(6):1877-1885
  相似文献   

10.
CXCL13/CXCR5 and CCL19/CCR7 play a quite important role in normal physiological conditions, but the functions of both chemokine/receptor pairs in pathophysiological events are not well-investigated. We have investigated expression and functions of CXCL13/CXCR5 and CCL19/CCR7 in CD23+CD5+ and CD23+CD5- B cells from cord blood (CB) and patients with B cell lineage acute or chronic lymphocytic leukemia (B-ALL or B-CLL). CXCR5 and CCR7 are selectively expressed on B-ALL, B-CLL, and CB CD23+CD5+ B cells at high frequency, but not on CD23+CD5- B cells. Although no significant chemotactic responsiveness was observed, CXCL13 and CCL19 cooperatively induce significant resistance to TNF-alpha-mediated apoptosis in B-ALL and B-CLL CD23+CD5+ B cells, but not in the cells from CB. B-ALL and B-CLL CD23+CD5+ B cells express elevated levels of paternally expressed gene 10 (PEG10). CXCL13 and CCL19 together significantly up-regulate PEG10 expression in the same cells. We have found that CXCL13 and CCL19 together by means of activation of CXCR5 and CCR7 up-regulate PEG10 expression and function, subsequently stabilize caspase-3 and caspase-8 in B-ALL and B-CLL CD23+CD5+ B cells, and further rescue the cells from TNF-alpha-mediated apoptosis. Therefore, we suggest that normal lymphocytes, especially naive B and T cells, use CXCL13/CXCR5 and CCL19/CCR7 for migration, homing, maturation, and cell homeostasis as well as secondary lymphoid tissues organogenesis. In addition, certain malignant cells take advantages of CXCL13/CXCR5 and CCL19/CCR7 for infiltration, resistance to apoptosis, and inappropriate proliferation.  相似文献   

11.
Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.  相似文献   

12.
13.
T cell differentiation in the thymus depends on sequential interactions between lymphoid progenitors and stromal cells in discrete regions of the cortex. Here we show that CXCL12/CXCR4 signaling is absolutely required for proper localization of early progenitors into the cortex and thus for successful steady state differentiation. All early progenitors in the thymus express CXCR4, and its ligand (CXCL12) is expressed only by stromal cells in the cortex, where early progenitors are found. Early progenitors migrate in response to CXCL12 in vitro, while thymus-specific deletion of CXCR4 in vivo results in failed cortical localization and developmental arrest. These findings indicate a crucial and nonredundant role for CXCR4 in facilitating localization of early lymphoid progenitors to tissue regions of the thymus, where lineage commitment and proliferation are controlled.  相似文献   

14.
Skin-derived migratory dendritic cells (DC), in contrast to bone marrow-derived DC (BMDC), express CXCR5, respond to the chemokine CXC ligand 13 (CXCL13) in vitro, and are capable of migrating to B cell zones (BCZ) in lymph nodes (LN) in vivo. Herein, we analyzed the surface phenotype of skin-derived migratory DC and found that 15-35% of MHC class II(high) cells showed high levels of expression of CXCR5 but expressed low levels of DEC205, a suggested characteristic of dermal-type DC in mice. To study the effects of CXCR5 on the trafficking dynamics of DC, we stably expressed CXCR5 in BMDC by retroviral gene transduction. CXCR5 was detected by flow cytometry on transduced cells, which responded to CXCL13 in vitro in chemotaxis assays (3-fold over nontransduced BMDC, p < 0.01). When injected into the footpads of mice, approximately 40% of injected CXCR5-BMDC were observed in BCZ of draining LN. Mice were vaccinated with CXCR5- and vector-BMDC that were pulsed with keyhole limpet hemocyanin (KLH) to induce Ag-specific cellular and humoral immune responses. Mice injected with CXCR5-BMDC (vs vector-BMDC) demonstrated marginally less footpad swelling in response to intradermal injection of KLH. Interestingly, significantly higher levels of KLH-specific IgG (p < 0.05) and IgM (p < 0.01) were found in the serum of mice injected with CXCR5-BMDC compared with mice immunized with vector-transduced BMDC. Thus, CXCR5 is predominantly expressed by dermal-type DC. Moreover, CXCR5 directs BMDC to BCZ of LN in vivo and modifies Ag-specific immune responses induced by BMDC vaccination.  相似文献   

15.
CXCR5 is a serpentine receptor implicated in cell migration in lymphocytes and differentiation in leukocytes. It causes MAPK pathway activation and has known membrane partners for signaling. CXCR5 mRNA is reportedly expressed in neutrophils following isolation, but its role in this cellular context is unknown. CXCR5 is also expressed in HL-60 cells, a human acute myeloid leukemia line, following treatment with all-trans retinoic acid, which induces differentiation toward a neutrophil-like state. CXCR5 is necessary for this process; differentiation was crippled in CXCR5 knockout cells and enhanced in cells ectopically expressing it. Since CXCR5 has various membrane protein partners, we investigated whether CXCR5-driven all-trans retinoic acid-induced differentiation depends on its association with such partners. Pursuing this, we generated HL-60 cells overexpressing the protein. We found that CXCR5 drove migration toward its ligand, CXCL13, and probed for interactions with several candidates using flow cytometry-based Förster resonance energy transfer. Surprisingly, we did not detect interactions with any candidates, including three reported in other cellular contexts. Additionally, we observed no significant changes in all-trans retinoic acid-induced differentiation; this may be due to the stoichiometry of CXCR5 and partner receptors or CXCL13. The anticipated membrane partnerings were surprisingly apparently unnecessary for downstream CXCR5 signaling and all-trans retinoic acid-induced differentiation.  相似文献   

16.
Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with β-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with β-arrestin 2.  相似文献   

17.
To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP-10), CXCL12 (SDF-1), and CXCL13 (BCA-1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post-traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine-treated-OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12- and CXCL13-treated OBs by real-time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease.  相似文献   

18.
Bone marrow stroma cells secrete the chemokine CXCL12 that may support bone marrow metastasis formation by neuroblastoma cells. The present study demonstrates that bone marrow stroma cell lines also secrete CXCL10, a chemokine that was shown in the past to have anti-malignancy functions. A receptor recognized by antibodies against CXCR3 was shown to be expressed by six neuroblastoma cell lines. Further detailed analysis was performed on the NUB6 and SK-NMC neuroblastoma cells, showing that CXCL10 induced potent Erk phosphorylation in a G(alpha)i-dependent manner. The role of a CXCR3-like receptor in Erk phosphorylation was substantiated by the ability of CXCL11, another potent CXCR3 ligand, to induce Erk phosphorylation in the NUB6 and SK-NMC cells. Further characterization of CXCL10 activities indicated that CXCL10 partly inhibited the growth of the NUB6 and SK-NMC cells. Both NUB6 and SK-NMC cells did not migrate to CXCL10, although their migratory machinery was intact, as evidenced by their migration to bone marrow constituents. Altogether, these results suggest that CXCL10 interacts with a CXCR3-like receptor in neuroblastoma cell lines, raising the possibility that following the homing of the tumor cells to the bone marrow (through a CXCL10-independent mechanism), CXCL10 may partly inhibit neuroblastoma cell growth at this site.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号