首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gynodioecy, a genetic dimorphism of females and hermaphrodites, is pertinent to an understanding of the evolution of plant gender, mating and genetic variability. Classical models of nuclear gynodioecy attribute the maintenance of the dimorphism to frequency-dependent selection in which the female phenotype has a fitness advantage at low frequency owing to a doubled ovule fertility. Here, I analyse explicit genetic models of nuclear gynodioecy that expand on previous work by allowing partial male sterility in combination with either fixed or dynamically evolving mutational inbreeding depression. These models demonstrate that partial male sterility causes fitness underdominance at the mating locus, which can prevent the spread of females. However, if partial male sterility is compensated by a change in selfing rate, overdominance at the mating locus can cause the spread of females. Overdominance at introduction of the male sterility allele can be caused by high inbreeding depression and a lower selfing rate in the heterozygote, by purging of mutations by a higher selfing rate in the heterozygote, and by low inbreeding depression and a higher selfing rate in the heterozygote. These processes might be of general importance in the maintenance of mating polymorphisms in plants.  相似文献   

2.

Background and Aims

Dioecism characterizes many crop species of economic value, including kiwifruit (Actinidia deliciosa). Kiwifruit male sterility occurs at the microspore stage. The cell walls of the microspores and the pollen of the male-sterile and male-fertile flowers, respectively, differ in glucose and galactose levels. In numerous plants, pollen formation involves normal functioning and degeneration timing of the tapetum, with calcium and carbohydrates provided by the tapetum essential for male fertility. The aim of this study was to determine whether the anther wall controls male fertility in kiwifruit, providing calcium and carbohydrates to the microspores.

Methods

The events occurring in the anther wall and microspores of male-fertile and male-sterile anthers were investigated by analyses of light microscopy, epifluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL assay) and transmission electron microscopy coupled with electron spectroscopy. The possibility that male sterility was related to anther tissue malfunctioning with regard to calcium/glucose/galactose provision to the microspores was also investigated by in vitro anther culture.

Key Results

Both tapetum and the middle layer showed secretory activity and both degenerated by programmed cell death (PCD), but PCD was later in male-sterile than in male-fertile anthers. Calcium accumulated in cell walls of the middle layer and tapetum and in the exine of microspores and pollen, reaching higher levels in anther wall tissues and dead microspores of male-sterile anthers. A specific supply of glucose and calcium induced normal pollen formation in in vitro-cultured anthers of the male-sterile genotype.

Conclusions

The results show that male sterility in kiwifruit is induced by anther wall tissues through prolonged secretory activity caused by a delay in PCD, in the middle layer in particular. In vitro culture results support the sporophytic control of male fertility in kiwifruit and open the way to applications to overcome dioecism and optimize kiwifruit production.  相似文献   

3.
Bumble bee pollinated Chamaecrista fasciculata provides pollen as the sole reward to its pollinators. Male sterility, expressed as an absence or nearly complete absence of pollen production, occurs in low frequency in populations of C. fasciculata. Here we describe experiments, using C. fasciculata, to examine frequently cited determinants of the spread and maintenance of male sterility: compensation and the genetic basis of male sterility. In addition, we examine the role the pollination system plays in determining the reproductive success of the male steriles. Seventeen populations in Maryland, Illinois, and Kansas were surveyed and found to range from 0 to 6% male sterility per population. An artificial population of male-sterile simulants and hermaphrodites was created to examine how the local frequency of nonrewarding male steriles might affect male-sterile female reproductive success. Male steriles performed equally poorly, with respect to seed production, whether surrounded by other male-sterile simulants or hermaphrodites. Compensation was examined by comparison of male steriles and hermaphrodites with respect to several reproductive and nonreproductive characters. Male steriles outperformed hermaphrodites in terms of nonreproductive biomass, but performed equally in terms of ovule number and produced many fewer flowers. The genetic basis of male sterility was examined by performing both intra- and interpopulational crosses of male steriles to hermaphrodites and indicate that male sterility is not purely cytoplasmic. The low frequency of male sterility in C. fasciculata populations may reflect reduced female reproductive success because of pollinator avoidance, lack of reproductive compensation, and a mode of inheritance that is not purely cytoplasmic.  相似文献   

4.
Population-genetic models of nucleo-cytoplasmic gynodioecy are shown to allow invasion of males and conversion to dioecy in a single cytotype. Pleiotropic effects of restorer alleles on fertility through male or female function can maintain a cytoplasmic polymorphism in a population that prevents evolution to dioecy regardless of the pollen fertility of males. However, a cytoplasmic polymorphism has little effect on, and may even reduce, the minimum pollen fertility required for the spread of males into an equilibrium gynodioecious population. Where the thresholds for dioecy are similar, the presence of males during a transient preequilibrium high frequency of females can accelerate evolution to dioecy by more than 50 times relative to nuclear male sterility. However, the appearance of a nonrestorable male-sterile cytotype generally eliminates males from both subdioecious and dioecious populations, converting them to purely cytoplasmic gynodioecy. These models contradict the previously suggested notion that nucleo-cytoplasmic gynodioecy represents a “stable” intermediate breeding system and instead show that such gynodioecy can generally evolve to subdioecy, and often to dioecy, as easily as nuclear gynodioecy.  相似文献   

5.
何爽  谭敦炎 《广西植物》2022,42(10):1652-1660
新疆阿魏是特产于我国新疆的伞形科阿魏属多年生一次结实草本植物,属于国家二级保护的濒危植物。其种群中除了该科植物典型的雄全同株个体以外,还具有一定数量雄性不育的雌株。为了探究新疆阿魏的雄性不育现象及其影响因素,该文从细胞形态学角度对种群中的雌株以及雌花的形态特征进行了观测,采用石蜡切片技术对功能性雌花雄蕊的花药败育过程进行了观察。结果表明:(1)雌株3月底萌动,4月中旬进入花期,5月底果实成熟;物候期与雄全同株个体相同。(2)植株高度(71.00±10.92) cm和直径(71.67±17.64) cm、一级分支(23.83±2.04);基生叶长(33.41±11.63) cm、宽(24.47±8.60) cm;在植株大小、基生叶大小等方面雌株与雄全同株个体无差异。(3)在雌株上,一级分支和二级分支均为雌花序,均可结实;雌花序的伞幅数/每复伞花序(13.22±4.70)、花数/每花序(12.03±2.30)、总花数/每复伞花序(159.08)均高于两性花序;雌株比雄全同株个体产生更多可结实的花,形成更多具有杂种优势的异交后代。(4)雌花序中,花排列紧密,花间距小于两性花序和雄花序;开花时...  相似文献   

6.
We have characterized a new male-sterile mutant in Arabidopsis that exhibits conditional sterility but has restored fertility when drought-stressed. This mutant, multiple impairments in male reproduction 1 (mimr1), shows pleiotropic defects in both vegetative and reproductive development. Examination with dissecting and scanning electron microscopes revealed that its pollen grains are not effectively released from the anther locule after dehiscence, and anther differentiation is defective. Growth of the style and stamen filaments are also abnormal. Histological analysis demonstrated that these phenomena are due not only to a noticeably reduced extension of the stamen but also greater elongation of the pistil. Genetic analysis indicated that mimr1 is a single locus recessive nuclear mutant. The mutation can be mapped to a locus strongly linked to a 1200-kb region on Chromosome 3. Meta-analysis of expression patterning presented several candidate genes in that region. No mutants with similar phenotypes have previously been reported, suggesting that mimr1 is a novel male-sterile locus. Characterization of MIMR1 will provide further insights into the molecular basis for the development of plant reproductive organs.  相似文献   

7.
The Caricaceae is a small family of tropical trees and herbs in which most species are dioecious. In the present study, we extend our previous work on dioecy in the Caricaceae, characterising the morphological variation in sexual expression in flowers of the dioecious tree Jacaratia mexicana . We found that, in J. mexicana , female plants produce only pistillate flowers, while male plants are sexually variable and can bear three different types of flowers: staminate, pistillate and perfect. To characterise the distinct types of flowers, we measured 26 morphological variables. Our results indicate that: (i) pistillate flowers from male trees carry healthy-looking ovules and are morphologically similar, although smaller than, pistillate flowers on female plants; (ii) staminate flowers have a rudimentary, non-functional pistil and are the only flowers capable of producing nectar; and (iii) perfect flowers produce healthy-looking ovules and pollen, but have smaller ovaries than pistillate flowers and fewer anthers than staminate flowers, and do not produce nectar. The restriction of sexual variation to male trees is consistent with the evolutionary path of dioecy from hermaphrodite ancestors through the initial invasion of male-sterile plants and a subsequent gradual reduction in female fertility in cosexual individuals (gynodioecy pathway), but further work is needed to confirm this hypothesis.  相似文献   

8.

Background and Aims

The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described.

Methods

The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD.

Key results

PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption.

Conclusions

Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.  相似文献   

9.
Gynodioecy, the co‐occurrence of females and hermaphrodites, is often due to conflicting interactions between cytoplasmic male sterility genes and nuclear restorers. Although gynodioecy often occurs in self‐compatible species, the effect of self‐pollination, inbreeding depression, and pollen limitation acting differently on females and hermaphrodites remains poorly known in the case of nuclear‐cytoplasmic gynodioecy (NCG). In this study, we model NCG in an infinite population and we study the effect of selfing rate, inbreeding depression, and pollen limitation on the maintenance of gynodioecy and on sex ratios at equilibrium. We found that selfing and inbreeding depression have a strong impact, which depends on whether restorer cost acts on male or female fitness. When cost affects male fitness, the strength of cost has no effect, whereas selfing and inbreeding depression only impact gynodioecy by modifying the value of the female advantage. When cost affects female fitness, selfing facilitates NCG and reduces the role of strength of the cost, even when no inbreeding depression occurs, whereas inbreeding depression globally restricts the maintenance of the polymorphism. Finally, we found that pollen limitation could additionally strongly modify the dynamic of gynodioecy. We discuss our findings in the light of empirical data available in gynodioecious species.  相似文献   

10.
Male and female sterility was induced in canola or rapeseed(Brassica napus L. cv. Westar) flowers grown under high temperatureconditions (32°C/26°C; day/night). At maturity, themajority of flower buds remained closed but had protruding stigmas.The stamens were reduced in size and the anthers showed abnormalmicrosporogenesis. The gynoecia, although normal in appearance,did not set seed and ovule development was aberrant. Flowersof the ogu CMS line of B. napus also showed similar ovular abnormalitiesunder high temperatures and male fertility was not restoredin them. The observations presented suggest that high temperaturesin the field may adversely affect the yield of canola. Temperature, male and female sterility, rapeseed, canola, Brassica napus  相似文献   

11.
Summary Unlike tuberosum, andigena potato germ plasm exhibits a high degree of genetic variation in morphological, biochemical and reproductive traits. Sixty-five percent of the 565 genotypes comprising 145 accessions of Solanum tuberosum ssp. andigena obtained from Argentina, Bolivia, Chile, Colombia and Peru remain totally vegetative and never develop any floral bud when cultivated in northern India. In 18% of genotypes, the floral buds develop but they drop off from the plants prematurely. Thus, 83% of genotypes do not develop mature flowers. The frequency of such genotypes is maximum in the Bolivian genotypes. Whereas 17% of genotypes produce mature flowers, only 2% develop berries. The highest proportion of floral bud formation and their subsequent development and differentiation into mature flowers occur in Peruvian and Colombian genotypes. Partial to high male sterility occurs in 93% of the flowering genotypes; their pollen sterility ranges from 15% to 91%. Seven percent of the flowering genotypes are completely pollen sterile. The male sterility is expressed variously, ranging from structural to sporogenous types. The floral bud formation, its development and retention to maturity, pollen and ovule functionability and fruit development are under the control of a large number of genes, most of which are unlinked and independent. Many of these genes are polygenic in nature.  相似文献   

12.
13.

Background

In this review we report on recent literature concerned with studies of gynodioecy, or the co-occurrence of female and hermaphrodite individuals in natural plant populations. Rather than review this literature in its entirety, our focus is on the interplay between theoretical and empirical approaches to the study of gynodioecy.

Scope

Five areas of active inquiry are considered. These are the cost of restoration, the influence of population structure on spatial sex-ratio variation, the influence of inbreeding on sex expression, the signature of cyto-nuclear coevolution on the mitochondrial genome, and the consequences of mitochondrial paternal leakage.

Conclusions

Recent advances in the study of gynodioecy have been made by considering both the ecology of female:hermaphrodite fitness differences and the genetics of sex expression. Indeed theory has guided empiricism and empiricism has guided theory. Future advances will require that some of the methods currently available only for model organisms be applied to a wider range of species.Key words: Breeding system, gynodioecy, cytoplasmic male sterility, restoration, sex ratio, inbreeding, population structure, genetic conflict  相似文献   

14.
Inbreeding depression is most pronounced for traits closely associated with fitness. The traditional explanation is that natural selection eliminates deleterious mutations with additive or dominant effects more effectively than recessive mutations, leading to directional dominance for traits subject to strong directional selection. Here we report the unexpected finding that, in the butterfly Bicyclus anynana, male sterility contributes disproportionately to inbreeding depression for fitness (complete sterility in about half the sons from brother-sister matings), while female fertility is insensitive to inbreeding. The contrast between the sexes for functionally equivalent traits is inconsistent with standard selection arguments, and suggests that trait-specific developmental properties and cryptic selection play crucial roles in shaping genetic architecture. There is evidence that spermatogenesis is less developmentally stable than oogenesis, though the unusually high male fertility load in B. anynana additionally suggests the operation of complex selection maintaining male sterility recessives. Analysis of the precise causes of inbreeding depression will be needed to generate a model that reliably explains variation in directional dominance and reconciles the gap between observed and expected genetic loads carried by populations. This challenging evolutionary puzzle should stimulate work on the occurrence and causes of sex differences in fertility load.  相似文献   

15.
16.
In many gynodioecous species, females produce more viable seeds than hermaphrodites. Knowledge of the relative contribution of inbreeding depression in hermaphrodites and maternal sex effects to the female fertility advantage and the genetic basis of variation in female fertility advantage is central to our understanding of the evolution of gender specialization. In this study we examine the relative contribution of inbreeding and maternal sex to the female fertility advantage in gynodioecious Thymus vulgaris and quantify whether there is genetically based variation in female fertility advantage for plants from four populations. Following controlled self and outcross (sib, within-population, and between-population) pollination, females had a more than twofold fertility advantage (based on the number of germinating seeds per fruit), regardless of the population of origin and the type of pollination. Inbreeding depression on viable seed production by hermaphrodites occurred in two populations, where inbreeding had been previously detected. Biparental inbreeding depression on viable seed production occurred in three of four populations for females, but in only one population for hermaphrodites. Whereas the maternal sex effect may consistently enhance female fertility advantage, inbreeding effects may be limited to particular population contexts where inbreeding may occur. A significant family x maternal sex interaction effect on viable seed production was observed, illustrating that the extent of female fertility advantage varies significantly among families. This result is due to greater variation in hermaphrodite (relative to female) seed fertility between families. Despite this genetic variation in female fertility advantage and the highly female biased sex ratios in populations of T. vulgaris, gynodioecy is a stable polymorphism, suggesting that strong genetic and/or ecological constraints influence the stability of this polymorphism.  相似文献   

17.
The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited   总被引:22,自引:0,他引:22  
Budar F  Touzet P  De Paepe R 《Genetica》2003,117(1):3-16
Cytoplasmic male sterility (CMS) in plants is a classical example of genomic conflict, opposing maternally-inherited cytoplasmic genes (mitochondrial genes in most cases), which induce male sterility, and nuclear genes, which restore male fertility. In natural populations, this type of sex control leads to gynodioecy, that is, the co-occurrence of female and hermaphroditic individuals within a population. According to theoretical models, two conditions may maintain male sterility in a natural population: (1) female advantage (female plants are reproductively more successful than hermaphrodites on account of their global seed production); (2) the counter-selection of nuclear fertility restorers when the corresponding male-sterility-inducing cytoplasm is lacking. In this review, we re-examine the model of nuclear-mitochondrial conflict in the light of recent experimental results from naturally occurring CMS, alloplasmic CMS (appearing after interspecific crosses resulting from the association of nuclear and cytoplasmic genomes from different species), and CMS plants obtained in the laboratory and carrying mitochondrial mutations. We raise new hypotheses and discuss experimental models that would take physiological interactions between cytoplasmic and nuclear genomes into account.  相似文献   

18.
Barr CM  Fishman L 《Heredity》2011,106(5):886-893
The mechanisms underlying genetic associations have important consequences for evolutionary outcomes, but distinguishing linkage from pleiotropy is often difficult. Here, we use a fine mapping approach to determine the genetic basis of association between cytonuclear male sterility and other floral traits in Mimulus hybrids. Previous work has shown that male sterility in hybrids between Mimulus guttatus and Mimulus nasutus is due to interactions between a mitochondrial gene from M. guttatus and two tightly linked nuclear restorer alleles on Linkage Group 7, and that male sterility is associated with reduced corolla size. In the present study, we generated a set of nearly isogenic lines segregating for the restorer region and male sterility, but with unique flanking introgressions. Male-sterile flowers had significantly smaller corollas, longer styles and greater stigmatic exsertion than fertile flowers. Because these effects were significant regardless of the genotypic composition of introgressions flanking the restorer region, they suggest that these floral differences are a direct byproduct of the genetic incompatibility causing anther abortion. In addition, we found a non-significant but intriguing trend for male-sterile plants to produce more seeds per flower than fertile siblings after supplemental pollination. Such pleiotropic effects may underlie the corolla dimorphism frequently observed in gynodioecious taxa and may affect selection on cytoplasmic male sterility genes when they initially arise.  相似文献   

19.
Sweigart AL  Fishman L  Willis JH 《Genetics》2006,172(4):2465-2479
Much evidence has shown that postzygotic reproductive isolation (hybrid inviability or sterility) evolves by the accumulation of interlocus incompatibilities between diverging populations. Although in theory only a single pair of incompatible loci is needed to isolate species, empirical work in Drosophila has revealed that hybrid fertility problems often are highly polygenic and complex. In this article we investigate the genetic basis of hybrid sterility between two closely related species of monkeyflower, Mimulus guttatus and M. nasutus. In striking contrast to Drosophila systems, we demonstrate that nearly complete hybrid male sterility in Mimulus results from a simple genetic incompatibility between a single pair of heterospecific loci. We have genetically mapped this sterility effect: the M. guttatus allele at the hybrid male sterility 1 (hms1) locus acts dominantly in combination with recessive M. nasutus alleles at the hybrid male sterility 2 (hms2) locus to cause nearly complete hybrid male sterility. In a preliminary screen to find additional small-effect male sterility factors, we identified one additional locus that also contributes to some of the variation in hybrid male fertility. Interestingly, hms1 and hms2 also cause a significant reduction in hybrid female fertility, suggesting that sex-specific hybrid defects might share a common genetic basis. This possibility is supported by our discovery that recombination is reduced dramatically in a cross involving a parent with the hms1-hms2 incompatibility.  相似文献   

20.
In gynodioecious plants the selective processes that determine the relative number of female and hermaphroditic individuals are often frequency dependent. Frequency-dependent fitness can occur in the two sexes through a variety of mechanisms, especially given pollen limitation and inbreeding depression when hermaphrodites are rare. Frequency dependence in several components of the fitness of female and hermaphroditic Silene vulgaris was tested in experiments in which the relative numbers of the two sexes was varied among 12 artificial populations. In females, the proportion of flowers that set fruit covaried positively among populations with the frequency of hermaphrodites in two separate experiments, whereas the number of flowers/plant covaried negatively in one case. In hermaphrodites, the number of seeds/fruit covaried positively with the frequency of hermaphrodites, whereas the fitness of hermaphrodites estimated through pollen transfer covaried negatively. The results are discussed as they relate to the selective maintenance of gynodioecy in S. vulgaris and in light of a recent model of the effect of population structure on selection in gynodioecious systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号