首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these "defective" metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (~8-9 genes), addition (~6-7 genes), up- and downexpression (~6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in "core" metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.  相似文献   

2.
Conversion of lignocellulosic feedstocks to ethanol requires microorganisms that effectively ferment both hexose and pentose sugars. Towards this goal, recombinant organisms have been developed in which heterologous genes were added to platform organisms such as Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli. Using a novel approach that relies only on native enzymes, we have developed a homoethanologenic alternative, Escherichia coli strain SE2378. This mutant ferments glucose or xylose to ethanol with a yield of 82% under anaerobic conditions. An essential mutation in this mutant was mapped within the pdh operon (pdhR aceEF lpd), which encodes components of the pyruvate dehydrogenase complex. Anaerobic ethanol production by this mutant is apparently the result of a novel pathway that combines the activities of pyruvate dehydrogenase (typically active during aerobic, oxidative metabolism) with the fermentative alcohol dehydrogenase.  相似文献   

3.
In the last decade, a major goal of research in biofuels has been to metabolically engineer microorganisms to ferment multiple sugars from biomass or agricultural wastes to fuel ethanol. Escherichia coli strains genetically engineered to contain the pet operon (Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase B genes) produce high levels of ethanol. Strains carrying the pet operon in plasmid (e.g., E. coli B/pLOI297) or in chromosomal (e.g., E. coli KO11) sites require antibiotics in the media to maintain genetic stability and high ethanol productivity. To overcome this requirement, we used the conditionally lethal E. coli strain FMJ39, which carries mutations for lactate dehydrogenase and pyruvate formate lyase and grows aerobically but is incapable of anaerobic growth unless these mutations are complemented. E. coli FBR1 and FBR2 were created by transforming E. coli FMJ39 with the pet operon plasmids pLOI295 and pLOI297, respectively. Both strains were capable of anaerobic growth and displayed no apparent pet plasmid losses after 60 generations in serially transferred (nine times) anaerobic batch cultures. In contrast, similar aerobic cultures rapidly lost plasmids. In high-cell-density batch fermentations, 3.8% (wt/vol) ethanol (strain FBR1) and 4.4% (wt/vol) ethanol (strain FBR2) were made from 10% glucose. Anaerobic, glucose-limited continuous cultures of strain FBR2 grown for 20 days (51 generations; 23 with tetracycline and then 28 after tetracycline removal) showed no loss of antibiotic resistance. Anaerobic, serially transferred batch cultures and high-density fermentations were inoculated with cells taken at 57 generations from the previous continuous culture. Both cultures continued to produce high levels of ethanol in the absence of tetracycline. The genetic stability conferred by selective pressure for pet-containing cells without requirement for antibiotics suggests potential commercial suitability for E. coli FBR1 and FBR2.  相似文献   

4.
Mutants of Escherichia coli which overproduce alcohol dehydrogenase were obtained by selection for the ability to use ethanol as an acetate source in a strain auxotrophic for acetate. A mutant having a 20-fold overproduction of alcohol dehydrogenase was able to use ethanol only to fulfill its acetate requirement, whereas two mutants with a 60-fold overproduction were able to use ethanol as a sole carbon source. The latter two mutants produced only 25% of the wild-type level of nitrate reductase, when grown under anaerobic conditions. Alcohol dehydrogenase production was largely unaffected by catabolite repression but was repressed by nitrate under both aerobic and anaerobic conditions. The genetic locus responsible for alcohol dehydrogenase overproduction was located at min 27 on the E. coli genetic map; the gene order, as determined by transduction, was trp tonB adh chlC hemA. The possible relationship of alcohol dehydrogenase to anaerobic redox systems such as formate-nitrate reductase is discussed.  相似文献   

5.
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2–3% of the sugar fermented is converted to glycerol. Replacing the NAD+-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD+ by transforming a double mutant (gpd1gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD+ regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.  相似文献   

6.
Conversion of lignocellulosic feedstocks to ethanol requires microorganisms that effectively ferment both hexose and pentose sugars. Towards this goal, recombinant organisms have been developed in which heterologous genes were added to platform organisms such as Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli. Using a novel approach that relies only on native enzymes, we have developed a homoethanologenic alternative, Escherichia coli strain SE2378. This mutant ferments glucose or xylose to ethanol with a yield of 82% under anaerobic conditions. An essential mutation in this mutant was mapped within the pdh operon (pdhR aceEF lpd), which encodes components of the pyruvate dehydrogenase complex. Anaerobic ethanol production by this mutant is apparently the result of a novel pathway that combines the activities of pyruvate dehydrogenase (typically active during aerobic, oxidative metabolism) with the fermentative alcohol dehydrogenase.  相似文献   

7.
大肠杆菌NZN111厌氧发酵的主要产物为丁二酸,是发酵生产丁二酸的潜力菌株。但是由于敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸甲酸裂解酶的编码基因 (pflB),导致辅酶NADH/NAD+不平衡,厌氧条件下不能利用葡萄糖生长代谢。构建烟酸转磷酸核糖激酶的重组菌Escherichia coli NZN111/pTrc99a-pncB,在厌氧摇瓶发酵过程中通过添加0.5 mmol/L的烟酸、0.3 mmol/L的IPTG诱导后重组菌的烟酸转磷酸核糖激酶 (Nicotinic acid phosphor  相似文献   

8.
Genetic engineering of ethanol production in Escherichia coli   总被引:16,自引:0,他引:16  
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased cell growth and the production of ethanol as the principal fermentation product from glucose. These results demonstrate that it is possible to change the fermentation products of an organism, such as E. coli, by the addition of genes encoding appropriate enzymes which form an alternative system for the regeneration of NAD+.  相似文献   

9.
Genetic engineering of ethanol production in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased cell growth and the production of ethanol as the principal fermentation product from glucose. These results demonstrate that it is possible to change the fermentation products of an organism, such as E. coli, by the addition of genes encoding appropriate enzymes which form an alternative system for the regeneration of NAD+.  相似文献   

10.
Wild-type Bacillus subtilis ferments 20 g/liter glucose in 48 h, producing lactate and butanediol, but not ethanol or acetate. To construct an ethanologenic B. subtilis strain, homologous recombination was used to disrupt the native lactate dehydrogenase (LDH) gene (ldh) by chromosomal insertion of the Zymomonas mobilis pyruvate decarboxylase gene (pdc) and alcohol dehydrogenase II gene (adhB) under the control of the ldh native promoter. The values of the intracellular PDC and ADHII enzymatic activities of the engineered B. subtilis BS35 strain were similar to those found in an ethanologenic Escherichia coli strain. BS35 produced ethanol and butanediol; however, the cell growth and glucose consumption rates were reduced by 70 and 65%, respectively, in comparison to those in the progenitor strain. To eliminate butanediol production, the acetolactate synthase gene (alsS) was inactivated. In the BS36 strain (BS35 delta alsS), ethanol production was enhanced, with a high yield (89% of the theoretical); however, the cell growth and glucose consumption rates remained low. Interestingly, kinetic characterization of LDH from B. subtilis showed that it is able to oxidize NADH and NADPH. The expression of the transhydrogenase encoded by udhA from E. coli allowed a partial recovery of the cell growth rate and an early onset of ethanol production. Beyond pyruvate-to-lactate conversion and NADH oxidation, an additional key physiological role of LDH for glucose consumption under fermentative conditions is suggested. Long-term cultivation showed that 8.9 g/liter of ethanol can be obtained using strain BS37 (BS35 delta alsS udhA+). As far as we know, this is the highest ethanol titer and yield reported with a B. subtilis strain.  相似文献   

11.
Using DNA obtained from the metagenome of an anaerobic digestor in a waste water treatment plant, we constructed a gene library cloned in the wide host-range cosmid pLAFR3. One cosmid enabled Rhizobium leguminosarum to grow on ethanol as sole carbon and energy source, this being due to the presence of a gene, termed adhEMeta. The AdhEMeta protein most closely resembles the AdhE alcohol dehydrogenase of Clostridium acetobutylicum, where it catalyses the formation of ethanol and butanol in a two-step reductive process. However, cloned adhEMeta did not confer ethanol utilization ability to Escherichia coli or to Pseudomonas aeruginosa, even though it was transcribed in both these hosts. Further, cell-free extracts of E. coli and R. leguminosarum containing cloned adhEMeta had butanol and ethanol dehydrogenase activities when assayed in vitro. In contrast to the well-studied AdhE proteins of C. acetobutylicum and E. coli, the enzyme specified by adhEMeta is not inactivated by oxygen and it enables alcohol to be catabolized. Cloned adhEMeta did, however, confer one phenotype to E. coli. AdhE- mutants of E. coli fail to ferment glucose and introduction of adhEMeta restored the growth of such mutants when grown under fermentative conditions. These observations show that the use of wide host-range vectors enhances the efficacy with which metagenomic libraries can be screened for genes that confer novel functions.  相似文献   

12.
Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.  相似文献   

13.
The electron transport chain (ETC) is one of the major energy generation pathways in microorganisms under aerobic condition. Higher yield of ATP can be achieved through oxidative phosphorylation with consumption of NADH than with substrate level phosphorylation. However, most value-added metabolites are in an electrochemically reduced state, which requires reducing equivalent NADH as a cofactor. Therefore, optimal production of value-added metabolites should be balanced with ETC in terms of energy production. In this study, we attempted to reduce the activity of ETC to secure availability of NADH. The ETC mutants exhibited poor growth rate and production of fermentative metabolites compared to parental strain. Introduction of heterologous pathways for synthesis of 2,3-butanediol and isobutanol to ETC mutants resulted in increased titres and yields of the metabolites. ETC mutants yielded higher NADH/NAD+ ratio but similar ATP content than that by the parental strain. Furthermore, ETC mutants operated fermentative metabolism pathways independent of oxygen supply in large-scale fermenter, resulting in increased yield and titre of 2,3-butanediol. Thus, engineering of ETC is a useful metabolic engineering approach for production of reduced metabolites.  相似文献   

14.
Due to steadily rising crude oil prices great efforts have been made to develop designer bugs for the fermentative production of higher alcohols, such as 2-methyl-1-butanol, 3-methyl-1-butanol and 2-Methyl-1-propanol (isobutanol), which all possess quality characteristics comparable to traditional oil based fuels. The common metabolic engineering approach uses the last two steps of the Ehrlich pathway, catalyzed by 2-ketoacid decarboxylase and an alcohol dehydrogenase converting the branched chain 2-ketoacids of L-isoleucine, L-leucine, and L-valine into the respective alcohols. This strategy was successfully used to engineer well suited and industrially employed bacteria, such as Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum for the production of higher alcohols. Among these alcohols, isobutanol is currently the most promising one regarding final titer and yield. This article summarizes the current knowledge and achievements on isobutanol production with E. coli, B. subtilis and C. glutamicum regarding the metabolic engineering approaches and process conditions.  相似文献   

15.
We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic conditions. An additional mutation in ppc made the mutant produce D-lactate like a homofermentative lactic acid bacterium. When the pta ppc double mutant was grown to higher biomass concentrations under aerobic conditions before it shifted to the anaerobic phase of D-lactate production, more than 62.2 g of D-lactate per liter was produced in 60 h, and the volumetric productivity was 1.04 g/liter/h. To examine whether the blocked acetate flux could be reoriented to a nonindigenous L-lactate pathway, an L-lactate dehydrogenase gene from Lactobacillus casei was introduced into a pta ldhA strain which lacked phosphotransacetylase and D-lactate dehydrogenase. This recombinant strain was able to metabolize glucose to L-lactate as the major fermentation product, and up to 45 g of L-lactate per liter was produced in 67 h. These results demonstrate that the central fermentation metabolism of E. coli can be reoriented to the production of D-lactate, an indigenous fermentation product, or to the production of L-lactate, a nonindigenous fermentation product.  相似文献   

16.
Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.  相似文献   

17.
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two 'uptake' hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production from sugars. In this work, the effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of preculture conditions, on hydrogen production and fermentation balance were examined. In suspensions of resting cells pregrown aerobically with formate, deletions in Hyd-3 abolished hydrogen production, whereas the deletion of both uptake hydrogenases improved hydrogen production by 37% over the parent strain. Under fermentative conditions, respiratory H2 uptake activity was absent in strains lacking Hyd-2. The effect of a deletion in hycA on H2 production was found to be dependent upon environmental conditions, but H2 uptake was not significantly affected by this mutation.  相似文献   

18.
Availability, low price, and high degree of reduction have made glycerol a highly attractive and exploited carbon source for the production of fuels and reduced chemicals. Here we report the quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli through the use of kinetic modeling and metabolic control analysis (MCA) to gain a better understanding of glycerol fermentation and identify key targets for genetic manipulation that could enhance product synthesis. The kinetics of glycerol fermentation in a batch culture was simulated using a dynamic model consisting of mass balances for glycerol, ethanol, biomass, and 11 intracellular metabolites, along with the corresponding kinetic expressions for the metabolism of each species. The model was then used to calculate metabolic control coefficients and elucidate the control structure of the pathways involved in glycerol utilization and ethanol synthesis. The calculated flux control coefficients indicate that the glycolytic flux during glycerol fermentation is almost exclusively controlled by the enzymes glycerol dehydrogenase (encoded by gldA) and dihydroxyacetone kinase (DHAK) (encoded by dhaKLM). In agreement with the MCA findings, overexpression of gldA and dhaKLM led to significant increase in glycerol utilization and ethanol synthesis fluxes. Moreover, overexpression of other enzymes involved in the pathways that mediate glycerol utilization and its conversion to ethanol had no significant impact on glycerol utilization and ethanol synthesis, further validating the MCA predictions. These findings were then applied as a means of increasing the production of ethanol: overexpression of glycerol dehyrdogenase and DHAK enabled the production of 20 g/L ethanol from crude glycerol, a by-product of biodiesel production, indicating the potential for industrial scale conversion of waste glycerol to ethanol under anaerobic conditions.  相似文献   

19.
【目的】克隆丙酮丁醇梭状芽胞杆菌(Clostridium acetobutylicum)ATCC824丁醇合成途径关键酶基因,构建产丁醇的工程大肠杆菌。【方法】以C.acetobutylicum ATCC824基因组为模板,分别扩增丁醇合成途径关键酶基因thil,adhE2和BCS operon(crt-bcd-etfB-etfA-hbd)基因序列,构建BCS operon-adhE2-thil/pTrc99a/MG1655(pBAT)。重组菌E.coli pBAT采用0.1 mmol异丙基-β-硫代半乳糖苷(IPTG)诱导5 h,测定乙酰基转移酶(THL)、3-羟基丁酰辅酶A脱氢酶(HBD)、3-羟基丁酰辅酶A脱水酶(CRT)、丁酰辅酶A脱氢酶(BCD)、醛醇脱氢酶(BYDH/BDH)的酶活。并以该基因工程菌作为发酵菌种,采用好氧、厌氧和微好氧三种培养方式,检测丁醇产量。【结果】酶活测定结果显示:THL酶活达到0.160 U/mg protein,酶活力提高了近30倍;HBD酶活力提高了近5倍;CRT酶活达到1.53 U/mg protein,野生菌株无此酶活;BCD酶活力提高了32倍;BYDH/BDH酶活力无显著提高。3种发酵培养结果显示在微好氧和厌氧条件下,均有丁醇产生,且丁醇的最大产量约为84 mg/L。【结论】本实验通过构建产丁醇基因工程大肠杆菌,实现了丁醇关键酶基因在大肠杆菌中的活性表达以及发酵产丁醇,为发酵法生产丁醇开辟了一条新的途径。  相似文献   

20.
目的:改造大肠杆菌的代谢途径,使非生产菌株大肠杆菌具备产异丁醇的能力.方法:将乳脂乳球菌NIZO B1157的2-酮酸脱羧酶基因kdcA克隆到大肠杆菌中,使大肠杆菌产异丁醇;另外,采取两种方法过量表达alsS、ilvC、ilvD基因,增加前体物质酮酸的供应,以提高异丁醇的产量:一是与kdcA串联表达;二是在另一个相容质粒中表达.结果:大肠杆菌工程菌具备产异丁醇的能力,其中相关基因在一个质粒中串联表达的产量比其在两个相容质粒中共表达的产量高30倍,达到3g/L.结论:导入的酮酸合成途径与醇类生产途径结合,能使非生产菌株大肠杆菌生产异丁醇,并且单质粒表达代谢途径相关基因的效果优于双质粒表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号