共查询到20条相似文献,搜索用时 0 毫秒
1.
Jay F. Bolin Kushan U. Tennakoon Mohamed Bin Abdul Majid Duncan D. Cameron 《Plant Species Biology》2017,32(1):74-80
The Burmanniaceae contain several lineages of achlorophyllous mycoheterotrophic plants that associate with arbuscular mycorrhizal fungi (AMF). Here we investigate the isotopic profile of a green and potentially mycoheterotrophic plant in situ, Burmannia coelestis, and associated reference plants. We generated δ 13C and δ 15N stable isotope profiles for five populations of B. coelestis. Burmannia coelestis was significantly enriched in 13C relative to surrounding C3 reference plants and significantly depleted in 13C relative to C4 reference plants. No significant differences were detected in 15N enrichment between B. coelestis and reference plants. The isotopic profiles measured are suggestive of partial mycoheterotrophy in B. coelestis. Within the genus Burmannia transitions to full mycoheterotrophy have occurred numerous times, suggesting that some green Burmannia species are likely to be partially mycoheterotrophic but in many conditions this mode of nutrition may only be detectable using natural abundance stable isotopic methods, such as when associated with C4 mycorrhizal plants. 相似文献
2.
Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars 总被引:11,自引:2,他引:11
Abstract A negative correlation between water-use efficiency (W), defined as the ratio of moles of carbon in the plant to moles of water transpired, and carbon isotope discrimination (Δ) was established for barley in pot experiments using 12 cultivars. The correlation was strong in two independent experiments in four different controlled environment where ambient temperature and vapour pressure deficit were varied and plants were either well-watered or given limited amounts of water. Variation among cultivars was found in both Δ and W and rankings of both parameters, according to cultivar, were similar in different environments. Limiting water usually increased water-use efficiency of plants. Total dry matter can be substituted for moles of carbon when calculating water-use efficiency but the correlation between W and Δ were calculated using the carbon content of dry matter. There were differences varied significantly among cultivars. Despite these differences, correlations were also large between whole plant W and Δ of any of the plant parts. The amount of dry matter partitioned into reproductive growth varied genetically, as did the effect of stress on the partitioning. Growth, W and Δ of barley were compared with theory derived from gas exchange properties and with other literature. The effect on W of variation in vapour pressure deficit in these experiments was removed by multiplying W by vapour pressure deficit to derive the parameter, k(Pa mol C/mol H2O). This allowed comparisons among experiments with different vapour pressure deficits. The mean k for these barley cultivars was similar to that calculated by others for grasses. However, variation was found, and, in contrast with previous work which treats k as a species constant, we conclude that there is promise in selecting for increased k. 相似文献
3.
BACKGROUND AND AIMS: Dryopteris crassirhizoma is a semi-evergreen fern growing on the floor of deciduous forests. The present study aimed to clarify the photosynthetic and storage functions of overwintering leaves in this species. METHODS: A 2-year experiment with defoliation and shading of overwintering leaves was conducted. Photosynthetic light response was measured in early spring (for overwintering leaves) and summer (for current-year leaves). KEY RESULTS: No nitrogen limitation of growth was detected in plants subjected to defoliation. The number of leaves, their size, reproductive activity (production of sori) and total leaf mass were not affected by the treatment. The defoliation of overwintering leaves significantly reduced the bulk density of rhizomes and the root weight. The carbohydrates consumed by the rhizomes were assumed to be translocated for leaf production. Photosynthetic products of overwintering leaves were estimated to be small. CONCLUSION: Overwintering leaves served very little as nutrient-storage and photosynthetic organs. They partly functioned as a carbon-storage organ but by contrast to previous studies, their physiological contribution to growth was found to be modest, probably because this species has a large rhizome system. The small contribution of overwintering leaves during the short-term period of this study may be explained by the significant storage ability of rhizomes in this long-living species. Other ecological functions of overwintering leaves, such as suppression of neighbouring plants in spring, are suggested. 相似文献
4.
Columnar cacti constitute the dominant elements in the vegetation structure of arid and semi‐arid New World ecosystems representing a plethora of food resources for vertebrate consumers. Previous stable isotope analysis in Central Mexico showed that columnar cacti are of low importance to build tissue for frugivorous bats. We used carbon stable isotope analysis of whole blood and breath samples collected from four species of frugivorous bats (Sturnira parvidens, Sturnira ludovici, Artibeus jamaicensis, and Artibeus intermedius) to reconstruct the importance of cactus plants in their diet. Breath samples were collected within 10 min (B10) of bat capture and ~12 h after capture (B720), representing the oxidation of recently ingested food and of body reserves, respectively. We expected that bats relied primarily on non‐cactus food to construct tissues and fuel oxidative metabolism. Non‐cactus food strongly predominated for tissue building, whereas oxidative metabolism was supported by a moderate preponderance of non‐cactus food for B10 samples, and a moderate preponderance of cactus food or an equal contribution of both sources for B720 samples. Artibeus and Surnira species appear to cover a narrow part of the diet with cactus food, confirming that the incorporation of nutrients derived from these plants is not generalized among vertebrate consumers. 相似文献
5.
《Journal of Plant Interactions》2013,8(4):229-237
Abstract Isotope and elemental composition of carbon (C) and nitrogen (N) as well as its mass loss were measured for Sphagnum fuscum litter after one and two years of incubation in three different soil zones defined by the position of water table in a pristine Sphagnum-dominated peatland on the coast of western Canada. Mass losses were greater for the first year than for the second year, and the greatest loss was found in the oxic zone closest to the peatland surface. Early stage of decomposition clearly affected isotope signatures in Sphagnum litter. Litter δ13C values significantly decreased after the first year of incubation. The depletion of 13C content during the first year might be related to the loss of more isotopically enriched soluble constituents coupled with the large mass loss. Litter δ15N values significantly increased after the first year of incubation in spite of the large mass loss. Litters incubated in the oxic zone had the greatest mass loss and 15N enrichment, suggesting that the enrichment was the result of interactions with soil microbes and preferential loss of lighter N. Conversely, litters incubated in the anoxic zone had smaller mass loss and the amount of N significantly increased, suggesting that the incorporation of bacterial biomass might also contribute to the 15N enrichment. The 15N enrichment trend continued in the second year, but the change was not significant as the first year. Increases in the δ15N values with depth in the near surface Sphagnum peat core suggests that the enrichment trend of litter 15N abundance with age is likely to continue for much longer periods than observed over the two-year period of this study. 相似文献
6.
The roles of mycorrhiza in facilitating the acquisition and transfer of carbon (C) and nitrogen (N) to adult orchids are poorly understood. Here, we employed isotopically labelled sources of C and N to investigate these processes in the green forest orchid, Goodyera repens. Fungus-to-orchid transfers of C and N were measured using mass spectrometry after supplying extraradical mycelial systems with double-labelled [13C-15N]glycine. Orchid-to-fungus C transfer was revealed and quantified by radioisotope imaging and liquid scintillation counting of extraradical mycelium following 14CO2 fixation by shoots. Both 13C and 15N were assimilated by the fungus and transferred to the roots and shoots of the orchid. Contrary to previous reports, considerable quantities (2.6% over 72 h) of fixed C were shown to be allocated to the extraradical mycelium of the fungus. This study demonstrates, for the first time, mutualism in orchid mycorrhiza, bidirectional transfer of C between a green orchid and its fungal symbiont, and a fungus-dependent pathway for organic N acquisition by an orchid. 相似文献
7.
1. The carbon source for reproduction in plants may differ between flowering and fruiting stages. To clarify how spring ephemerals use current photosynthetic products for reproduction, the allocation patterns of photosynthate at flowering and fruiting and the effects of resource limitation on reproductive performance in Corydalis ambigua were assessed.
2. A13 C tracing experiment revealed that about 20% of the current photosynthetic carbon was used for reproduction at both flowering and fruiting. The proportion of 13 C allocated to fruits was constant irrespective of the light level. In contrast, 13 C translocation to tubers increased at fruiting, and this trend was accelerated when plants were shaded.
3. Defoliation treatment significantly reduced nectar production and tuber mass, while seed production was not affected. Therefore, when carbon assimilation was limited, carbon was preferentially allocated to current reproduction (seeds) rather than to pollinator attraction (nectar) or storage (tuber).
4. If seed production is partly supported by carbohydrate reserved in the old tissue of tubers, nectar and seed production may not compete strongly for carbon sources. In contrast to the ability of high seed production, the susceptibility of nectar production to current photosynthesis indicates that seed production of this species is basically limited by pollen capture.
5. Therefore, temporal separation of resource pool for reproduction may mitigate the joint limitation of seed production between pollinator attraction and resource availability. Temporal variation of the sink–source balance of storage organ is crucial to understand the cost of reproduction in perennial plants. 相似文献
2. A
3. Defoliation treatment significantly reduced nectar production and tuber mass, while seed production was not affected. Therefore, when carbon assimilation was limited, carbon was preferentially allocated to current reproduction (seeds) rather than to pollinator attraction (nectar) or storage (tuber).
4. If seed production is partly supported by carbohydrate reserved in the old tissue of tubers, nectar and seed production may not compete strongly for carbon sources. In contrast to the ability of high seed production, the susceptibility of nectar production to current photosynthesis indicates that seed production of this species is basically limited by pollen capture.
5. Therefore, temporal separation of resource pool for reproduction may mitigate the joint limitation of seed production between pollinator attraction and resource availability. Temporal variation of the sink–source balance of storage organ is crucial to understand the cost of reproduction in perennial plants. 相似文献
8.
Epipogium aphyllum is a rare Eurasian achlorophyllous forest orchid known to associate with fungi that form ectomycorrhizas, while closely related orchids of warm humid climates depend on wood- or litter-decomposer fungi. We conducted (13) C and (15) N stable isotope natural abundance analyses to identify the organic nutrient source of E. aphyllum from Central Norway. These data for orchid shoot tissues, in comparison to accompanying autotrophic plants, document C and N flow from ectomycorrhizal fungi to the orchid. DNA data from fungal pelotons in the orchid root cortex confirm the presence of Inocybe and Hebeloma, which are both fungi that form ectomycorrhizas. The enrichment factors for (13) C and (15) N of E. aphyllum are used to calculate a new overall average enrichment factor for mycoheterotrophic plants living in association with ectomycorrhizal fungi (ε(13) C ± 1 SD of 7.2 ± 1.6 ‰ and ε(15) N ± 1 SD of 12.8 ± 3.9 ‰). These can be used to estimate the fungal contribution to organic nutrient uptake by partially mycoheterotrophic plants where fully mycoheterotrophic plants are lacking. N concentrations in orchid tissue were unusually high and significantly higher than in accompanying autotrophic leaf samples. This may be caused by N gain of E. aphyllum from obligate ectomycorrhizal fungi. We show that E. aphyllum is an epiparasitic mycoheterotrophic orchid that depends on ectomycorrhizal Inocybe and Hebeloma to obtain C and N through a tripartite system linking mycoheterotrophic plants through fungi with forest trees. 相似文献
9.
Leslie R. Germain Matthew D. McCarthy Paul L. Koch James T. Harvey 《Marine Mammal Science》2012,28(3):542-560
Stable carbon and nitrogen isotope ratios (δ13C and δ15N) of serum, red blood cells (RBC), muscle, and blubber were measured in captive and wild northeast Pacific harbor seals (Phoca vitulina richardii) at three coastal California sites (San Francisco Bay, Tomales Bay, and Channel Islands). Trophic discrimination factors (ΔTissue‐Diet) were calculated for captive seals and then applied in wild counterparts in each habitat to estimate trophic position and feeding behavior. Trophic discrimination factors for δ15N of serum (+3.8‰), lipid‐extracted muscle (+1.6‰), and lipid‐blubber (+6.5‰) are proposed to determine trophic position. An offset between RBC and serum of +0.3‰ for δ13C and ?0.6‰ for δ15N was observed, which is consistent with previous research. Specifically, weaner seals (<1 yr) had large offsets, suggesting strong trophic position shifts during this life stage. Isotopic values indicated an average trophic position of 3.6 at both San Francisco Bay and Tomales Bay and 4.2 at Channel Islands. Isotopic means were strongly dependent on age class and also suggested that mean diet composition varies considerably between all locations. Together, these data indicate that isotopic composition of blood fractions can be an effective approach to estimate trophic position and dietary behavior in wild pinnipeds. 相似文献
10.
BACKGROUND AND AIMS: The light availability on a temperate, deciduous-forest floor varies greatly, reflecting the seasonal leaf dynamics of the canopy trees. The growth and/or reproductive activity of understorey plants should be influenced by the length of the high-irradiance period from snowmelt to canopy closure. The aim of the present study was to clarify how spring-blooming species regulate the translocation of photosynthetic products to current reproduction and storage organs during a growing season in accordance with the changing light conditions. METHODS: Growth pattern, net photosynthetic rate, seed production, and shoot and flower production in the next year of Trillium apetalon were compared between natural and experimentally shaded conditions. Furthermore, translocation of current photosynthetic products within plants was assessed by a labelled carbon-chase experiment. KEY RESULTS: During the high-irradiance period, plants showed high photosynthetic ability, in which current products were initially used for shoot growth, then reserved in the rhizome. Carbon translocation to developing fruit occurred after canopy closure, but this was very small due to low photosynthetic rates under the darker conditions. The shading treatment in the early season advanced the time of carbon translocation to fruit, but reduced seed production in the current year and flower production of the next year. CONCLUSIONS: Carbon translocation to the storage organ had priority over seed production under high-irradiance conditions. A shortened bright period due to early canopy closure effectively restricts carbon assimilation, which greatly reduces subsequent reproductive output owing to low photosynthetic products for fruit development and small carbon storage for future reproduction. As populations of this species are maintained by seedling recruitment, acceleration of canopy closure timing may influence the maintenance and dynamics of populations. 相似文献
11.
Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13C, δ15N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to −59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized. 相似文献
12.
13.
The source:sink ratio of clonal white clover ( Trifolium repens L.) plants was manipulated by shading or removing leaves, and the consequences for carbon export from, and for the weight, area and net photosynthesis of, developing leaves were determined. When treatments were imposed just before young leaves usually change from C sinks to C sources, no effect on the point at which the sink-to-source transition occurred was observed, Leaves exported a similar proportion of the C they fixed, irrespective of stresses imposed upon the rest of the plant. However, differences in the destination of exported C were observed. More C moved to the stolon apex, and less to the stolon tissue itself, from leaves at Carlson stage 0.8 (leaflets about 60% unfolded) when mature leaves were removed or shaded. When 2 out of 3 mature leaves were removed from a stolon, short-term responses such as a 10% increase in net photosynthesis of the residual mature leaf, and greater export of C from this leaf to the apex, partially compensated very young leaves for loss of C supply. The result was that, when these young leaves were fully unfolded, they had similar surface area to those which had developed on undefoliated plants, but weighed nearly 20% less. Thus the immediate response to defoliation was an increase in the speeific leaf area [cm2 (g of dry weight)−1 ] of new leaves, and the assimilation rate (net photosynthesis×area) of these leaves remained unchanged. 相似文献
14.
Lixin Wang Barney Kgope Paolo D’Odorico Stephen A. Macko 《African Journal of Ecology》2008,46(4):540-546
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari. 相似文献
15.
16.
Abstract Soil organic matter (SOM) was sampled from lateritic soil profiles across an abrupt eucalypt savanna–monsoon rainforest boundary on the north coast of Croker Island, northern Australia. Accelerator mass spectrometry dating revealed that SOM that had accumulated at the base of these 1.5 m profiles had a radiocarbon age of about 5000 years. The mean carbon and nitrogen stable isotope composition of SOM from 10 cm deep layers from the surface, middle and base of three monsoon rainforest soil profiles was significantly different from the means for these layers in three adjacent savanna soil profiles, suggesting the isotopic ‘footprint’ of the vegetation boundary has been stable since the mid Holocene. Although there were no obvious environmental discontinuities associated with the boundary, the monsoon rainforest was found to occur on significantly more clay rich soils than the surrounding savanna. Tiny fragments of monsoon rainforest and abandoned ‘nests’ (large earthen mounds) of the orange‐footed scrubfowl, an obligate monsoon rainforest species, occurred in the savanna, signalling that the rainforest was once more extensive. Despite episodic disturbances, such as tropical storm damage and fires, the stability of the boundary is probably maintained because clay rich soils enable monsoon rainforest tree species to grow rapidly and achieve canopy closure, thereby excluding grass and reducing the risk of fire. Conversely, slower tree growth rates, grass competition and fire on the savanna soils would impede the expansion of the rainforest although high rainfall periods with shorter dry seasons may enable rainforest trees to grow sufficiently quickly to colonize the savanna successfully. 相似文献
17.
Stable water levels and turbidity associated with flow regulation in the River Murray have promoted the growth of filamentous green algae and Cyanobacteria in biofilms on submerged wood. We investigated the assimilation of biofilm algae by two dominant consumers, the decapod crustaceans Macrobrachium australiense (Palaemonidae) and Paratya australiensis (Atyidae), in two river reaches differing in the extent of floodplain development, hence wetland connectivity. Filamentous Cyanobacteria, a major part of the biofilms assimilated in combination with other foods, were up to 83% of the algal component of the gut content volume of P. australiensis and 44% that of M. australiense. Cyanobacteria have not previously been reported as a major source of nutrition for adult decapods. There was little difference between the stable isotopic signatures (13C/12C, 15N/14N) of the two decapod species, or between decapods in the two reaches. Coarse and fine particulate organic matter from the gorge had similar isotopic signatures to those from upstream and so were likely derived from macrophyte detritus rather than local willows. Red gum leaves and wood were too depleted in both 13C and 15N to register in the diets of either decapod in gorge or floodplain reaches. The most likely food sources for the decapods are littoral plants in the gorge reach and fine particulate organic matter material processed upstream. This is consistent with current hypotheses of organic matter flux in large river systems. 相似文献
18.
The use of acetic acid as a source of carbon by cultured Chondrus crispus (Gigartinales,Rhodophyta) stackhouse 总被引:1,自引:1,他引:0
When growing seaweeds in tanks, pH and carbon source supply have to be controlled in order to maximize photosynthesis. pH can be controlled either by adding various inorganic acids which requires the extra addition of carbon, or by combining pH control and carbon source with for instance CO2 or an organic acid such as acetic acid (CH3COOH). We have found comparable productivity of Chondrus using CO2 or CH3COOH in tank culture with an increase in production of 25.0 and 27.5%, respectively, over the control. Laboratory experiments showed that acetic acid enabled us to maintain a steady state total inorganic carbon in the medium, the algae displaying an active photosynthesis. Experiments using labelled acetic acid CH3-14COOH showed that the acid molecule or at least the -14COOH group is taken up by Chondrus although the mechanism was not elucidated. Preliminary extractions with hot ethanol showed that 67.9% of the label was solubilized from labelled tissue. Few counts were found in the carrageenans (< 1 %) and between 25.6 and 45.1% were found in the cellulosic residues. Acetic acid is suggested as an interesting means of regulating the pH and adding carbon in macrophyte culture. 相似文献
19.
This study investigated the impact of lipid extraction, CaCO3 removal and of both treatments combined on fish tissue δ13 C, δ15 N and C:N ratio. Furthermore, the suitability of empirical δ13 C lipid normalization and correction models was examined. δ15 N was affected by lipid extraction (increase of up to 1·65‰) and by the combination of both treatments, while acidification alone showed no effect. The observed shift in δ15 N represents a significant bias in trophic level estimates, i.e. lipid-extracted samples are not suitable for δ15 N analysis. C:N and δ13 C were significantly affected by lipid extraction, proportional to initial tissue lipid content. For both variables, rates of change with lipid content (ΔC:N and Δδ13 C) were species specific. All tested lipid normalization and correction models produced biased estimates of fish tissue δ13 C, probably due to a non-representative database and incorrect assumptions and generalizations the models were based on. Improved models need a priori more extensive and detailed studies of the relationships between lipid content, C:N and δ13 C, as well as of the underlying biochemical processes. 相似文献
20.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13 Cl ) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13 Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13 Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13 Cl and the cumulative flux-weighted δ 13 C value of photosynthates were positively correlated, suggesting that progressive 13 C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13 C discrimination and associated shifts in the δ 13 C signature of primary respiratory substrates. The 13 C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13 Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism. 相似文献