首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean‐centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved 13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird‐ and bat‐pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species‐rich clades.  相似文献   

2.
Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.  相似文献   

3.
The effectiveness of flower visitors as pollinators will determine their potential role as selective agents on flower traits. Pitcairnia angustifolia has floral characters that would fit pollination by long-billed hummingbirds, and they should be the most effective pollinators for this plant. To test this prediction, we characterized the behavior of visitors toward flowers and their pollination effectiveness. Coereba flaveola (bananaquits) was the most frequent flower visitor and acted as a primary nectar robber; however, they pollinated incidentally and deposited pollen on stigmas. The endemic short-billed hummingbird Chlorostilbon maugaeus behaved as a secondary robber and did not pollinate flowers. As expected, the long-billed hummingbird, Anthracothorax viridis, was the most efficient visitor in terms of pollen deposition; however, it was the least frequent flower visitor. Introduced Apis mellifera (honeybees) were second in efficiency at depositing pollen and performed one third of the flower visits. Estimates of the expected rate of pollen deposition by each pollinator did not identify a single most effective pollinator. For P. angustifolia at least three flower visitors including an exotic bee and a nectar robber may be equally important to reproductive success. While these results limit our ability to make predictions on the role of hummingbird-pollination on current flower evolution, they do suggest the potential for pollination redundancy among flower visitors for P. angustifolia populations.  相似文献   

4.
Many angiosperm lineages present transitions from bee to hummingbird pollination. The flower design in most of these lineages includes either corolla tubes or nectar spurs, structures that commonly experienced an elongation with the acquisition of hummingbird pollination. It is proposed that this increases the fit between the bird head and flower structures, and isolates or partially blocks bees from the interaction. But can this transition occur if the ancestral flower design lacks tubes or spurs? Here we focus on the transition from bee to hummingbird pollination in the Loasaceae subfamily Loasoideae. Loasoideae flowers have radial corollas with separated petals; therefore, they do not display corolla tubes nor nectar spurs. These flowers also present a whorl of nectar scales and staminodes, unique to the subfamily, which is involved in flower–pollinator fit and in nectar harvesting. To explore flower shape adaptation to hummingbird pollination, we tested for correspondence between pollinators and flower shape in Loasoideae. In order to achieve this, we first compared the evolutionary history of flower phenotype and pollination mode, and then used stochastic character mapping and geometric-morphometric variables in a comparison of alternative evolutionary models. The results of our study suggest that the transition from bee to bird pollination was accompanied by changes in the shape of the staminodial complex, along with the evolution of relatively closed corollas. Moreover, while bird pollination seems to be the end point in the evolution of pollination syndromes in many angiosperm lineages, rodent pollinated flowers probably evolved from ancestral bird pollinated flowers in Loasoideae. Our findings suggest that the evolution of bird pollinated flowers from ancestral bee pollinated flowers does not require the presence of corolla tubes or spurs, and can take place as long as the flower design includes structures participating in flower–pollinator fit.  相似文献   

5.
Shifts in pollen vectors favour diversification of floral traits, and differences in pollination strategies between congeneric sympatric species can contribute to reproductive isolation. Divergence in flowering phenology and selfing could also reduce interspecific crossing between self‐compatible species. We investigated floral traits and visitation rates of pollinators of two sympatric Encholirium species on rocky outcrops to evaluate whether prior knowledge of floral characters could indicate actual pollinators. Data on flowering phenology, visitation rates and breeding system were used to evaluate reproductive isolation. Flowering phenology overlapped between species, but there were differences in floral characters, nectar volume and concentration. Several hummingbird species visited flowers of both Encholirium spp., but the endemic bat Lonchophylla bokermanni and an unidentified sphingid only visited E. vogelii. Pollination treatments demonstrated that E. heloisae and E. vogelii were partially self‐compatible, with weak pollen limitation to seed set. Herbivores feeding on inflorescences decreased reproductive output of both species, but for E. vogelii the damage was higher. Our results indicate that actual pollinators can be known beforehand through floral traits, in agreement with pollination syndromes stating that a set of floral traits can be associated with the attraction of specific groups of pollinators. Divergence on floral traits and pollinator assemblage indicate that shifts in pollination strategies contribute to reproductive isolation between these Encholirium species, not divergence on flowering phenology or selfing. We suggest that hummingbird pollination might be the ancestral condition in Encholirium and that evolution of bat pollination made a substantial contribution to the diversification of this clade.  相似文献   

6.
The co-occurrence of elaborate flowers visited by specific groups of pollinators and capacity for autonomous selfing in the same plant species has puzzled evolutionary biologists since the time of Charles Darwin. To examine whether autonomous selfing and floral specialization evolved in association, we quantified the autofertility level (AFI) in nine Schizanthus species characterized by a wide range of pollination specialization, revealing AFI values of 0.02 to complete selfing. An independent contrasts analysis conducted on AFIs and number of functional pollinator groups showed that autonomous selfing evolved from an ancestral outcrossing system as plants became increasingly specialized (r = -0.82). To assess whether autonomous selfing together with specialization acts as a reproductive assurance mechanism, we estimated spatial and interannual variation in fruit set due to pollinator failure in two closely related high Andean Schizanthus species differing in their specialization levels. Variation in pollinator failure rate was more pronounced and autonomous selfing increased fruit production over biotically assisted pollination in the more specialized species. Our study suggests that specialized pollination deems species more vulnerable to pollinator fluctuation thus promoting the evolution of delayed autonomous selfing.  相似文献   

7.
Floral divergence among congeners may relate to differential utilization of pollinators and contribute to reducing overlap in pollination niches. To investigate whether and how floral differences are associated with differential utilization of pollinators in three sympatric Adenophora species, we analyzed floral traits and evaluated the contribution of different visitors to pollination. We compared visitation rates of different pollinator categories in different years and sites. A suite of floral traits differed among the three Adenophora species, suggesting adaptation to diurnal versus nocturnal pollination and an intermediate condition. However, many visitor species were shared among the three plant species, suggesting that floral traits did not rigorously filter visitors. Effective pollinators were large bees and moths. The importance of large bees as pollinators decreased whereas that of moths increased along the gradient from typically bee-pollinated to moth-pollinated flowers. The intermediate species (A. khasiana) differed substantially from the other two species in pollinator species but not in pollinator categories. The principal pollinator category of each species was constant across years and sites except in the intermediate species where it differed between two sites. Overall, the three sympatric species of Adenophora partition pollinators by floral divergence and the principal pollinators coincide with the predictions based on floral syndromes.  相似文献   

8.
The idea of pollination syndromes has been largely discussed but no formal quantitative evaluation has yet been conducted across angiosperms. We present the first systematic review of pollination syndromes that quantitatively tests whether the most effective pollinators for a species can be inferred from suites of floral traits for 417 plant species. Our results support the syndrome concept, indicating that convergent floral evolution is driven by adaptation to the most effective pollinator group. The predictability of pollination syndromes is greater in pollinator‐dependent species and in plants from tropical regions. Many plant species also have secondary pollinators that generally correspond to the ancestral pollinators documented in evolutionary studies. We discuss the utility and limitations of pollination syndromes and the role of secondary pollinators to understand floral ecology and evolution.  相似文献   

9.
The widespread pattern of parallel flower evolution as an adaptation for particular pollinator agents, known as "pollination syndromes", has long drawn attention from evolutionary biologists. Here, we report parallel evolution of saucer-shaped flowers and an associated unusual pollination system within the lineage Heucherina, a group of saxifragaceous genera. Field observations reveal that 18 of 28 plant species studied are pollinated almost exclusively by fungus gnats (Mycetophilidae). Among the 18 species with a fungus-gnat pollination system, 13 have characteristic saucer-shaped flowers and are pollinated mainly by several unspecialized mycetophilid genera with short mouthparts. We performed phylogenetic analyses using nucleotide sequences of external and internal transcribed spacers of nuclear ribosomal DNA and reconstructed ancestral floral morphologies with an establishment of the model of floral character evolution under a maximum-likelihood framework. Our analysis indicates that there is significant directionality in the evolutionary shifts of floral forms in the Heucherina. The inferred phylogeny further supports four origins of saucer-shaped flowers, which is shared among 14 species that are traditionally classified into the genus Mitella. In addition, our analysis indicates the extensive polyphyly of genus Mitella, as also suggested previously. The results suggest that the flower-visiting fungus gnats have caused convergent selection for the saucer-shaped flower repeatedly evolved within Heucherina.  相似文献   

10.
Species often interact indirectly with each other via their traits. There is increasing appreciation of trait‐mediated indirect effects linking multiple interactions. Flowers interact with both pollinators and floral herbivores, and the flower‐pollinator interaction may be modified by indirect effects of floral herbivores (i.e., florivores) on flower traits such as flower size attracting pollinators. To explore whether flower size affects the flower‐pollinator interaction, we used Eurya japonica flowers. We examined whether artificial florivory decreased fruit and seed production, and also whether flower size affected florivory and the number of floral visitors. The petal removal treatment (i.e., artificial florivory) showed approximately 50% reduction in both fruit and seed set in natural pollination but not in artificial pollination. Furthermore, flower size increased the number of floral visitors, although it did not affect the frequency of florivory. Our results demonstrate that petal removal indirectly decreased 75% of female reproductive output via decreased flower visits by pollinators and that flower size mediated indirect interactions between florivory and floral visitors.  相似文献   

11.
The radiation of angiosperms is associated with shifts among pollination modes that are thought to have driven the diversification of floral forms. However, the exact sequence of evolutionary events that led to such great diversity in floral traits is unknown for most plant groups. Here, we characterize the patterns of evolution of individual floral traits and overall floral morphologies in the tribe Bignonieae (Bignoniaceae). We identified 12 discrete traits that are associated with seven floral types previously described for the group and used a penalized likelihood tree of the tribe to reconstruct the ancestral states of those traits at all nodes of the phylogeny of Bignonieae. In addition, evolutionary correlations among traits were conducted using a maximum likelihood approach to test whether the evolution of individual floral traits followed the correlated patterns of evolution expected under the "pollination syndrome" concept. The ancestral Bignonieae flower presented an Anemopaegma-type morphology, which was followed by several parallel shifts in floral morphologies. Those shifts occurred through intermediate stages resulting in mixed floral morphologies as well as directly from the Anemopaegma-type morphology to other floral types. Positive and negative evolutionary correlations among traits fit patterns expected under the pollination syndrome perspective, suggesting that interactions between Bignonieae flowers and pollinators likely played important roles in the diversification of the group as a whole.  相似文献   

12.
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower–pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird‐pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower–pollinator fit [floral tube length (TL) and anther–nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two‐fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower–pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among‐population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower–leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.  相似文献   

13.
一种由蜂类和鸟类传粉的鼠尾草属植物的花生物学:建立了有性阶段、花蜜动态过程和 繁育系统与访花行为的联系 在对传粉综合征的认知过程中,人们已经意识到共享某类传粉媒介的植物间的花表型中存在着适应性趋同的现象。然而,虽然许多植物都表现出了与特定综合征相关的性状,但它们的访花传粉者却不止一种。这种情况可能意味着传粉媒介的变化,或者可能形成了一种可适应不同传粉媒介的稳定情况。此前在鼠尾草属Salvia  stachydifolia 中开展的一项研究表明,该物种的花形状可以最大限度地提升蜜蜂和蜂鸟的传粉效果。在本文中,我们研究了该物种的花生物学的另外3个方面:有性阶段、花蜜动态过程和繁育系统,并探讨了它们与传粉者行为之间的联系,以了解该物种在这3个方面上对蜜蜂和/或蜂鸟传粉的适应性变化。我们以某一温室种群为研究对象,对其在5种不同传粉方式下的繁育系统进行了刻画。为了确定有性阶段,我们分别对花开、花药开裂、花冠掉落和柱头可授性的情况进行了记录。此外,我们还对花蜜体积和浓度在一整天的动态变化进行了表征。最后,为了确定传粉者的 组成和访花模式,我们开展了实地观测并记录传粉者的行为。研究结果显示,S. stachydifolia 是部分雄蕊 先成熟且可自交,但自由授粉植株的繁殖成功率最高,表明繁殖过程主要取决于传粉者的活动。熊蜂属Bombus opifex (一种大黄蜂)是最常见的访花者,但在清晨和黄昏时占主导地位的访花者则是红尾慧星蜂鸟(Sappho sparganura)。花蜜常见于大黄蜂授粉的情况。我们认为蜜蜂-蜂鸟混合访花的模式构成了一种不稳定的进化情形,使得S.  stachydifolia 成为一种理想的研究对象,用以了解传粉媒介发生变化的生态环境。  相似文献   

14.
  • The association between plants and flower visitors has been historically proposed as a main factor driving the evolutionary change of both flower and pollinator phenotypes. The considerable diversity in floral morphology within the tribe Antirrhineae has been traditionally related to pollinator types. We used empirical data on the flower visitors from 59 Antirrhineae taxa from the literature and our own field surveys, which provide an opportunity to test whether flower phenotypes are reliable predictors of visitors and pollinator niches.
  • The degree of adjustment between eight key floral traits and actual visitors was explored by testing the predictive value of inferred pollinator syndromes (i.e. suites of floral traits that characterise groups of plant species related to pollination). Actual visitors and inferred pollinator niches (categorisation of visitors’ association using a modularity algorithm) were also explored using Linear Discriminant Analysis (LDA).
  • The bee pollinator niche is correctly classified for flowers with dull corolla colour, without nectar guides, as the most important predictor. Both predictive value and statistical classification prove useful in classifying Antirrhineae taxa and the bee pollinator niche, mostly as a consequence of the high proportion of genera and taxa with occluded corollas primarily visited by bees. Our predictive approach rendered a high Positive Predictive Value (PPV) of floral traits in the diagnosis of visitors/pollinator niches. In particular, a high PPV was found for bees as both visitors and forming pollinator niches. In addition, LDA showed that four pollinator niches are well defined based on floral traits.
  • The large number of species visited by bees irrespective of pollinator syndromes leads us to hypothesise their generalist pollinator role, despite the phenotypically specialised flowers of Antirrhineae.
  相似文献   

15.
This study explores the association between variation in pollinator type and flower size in Macromeria viridiflora (Boraginaceae) by studying the breeding system of the plant and the pollinator effectiveness of floral visitors. Studies were conducted at two sites where plants differ in flower size and floral visitors. Breeding system studies showed that while plants are self-compatible and occasionally produce seed autogamously, pollinators are important for reproductive success in the plants. However, plants are not pollinator-limited at these sites. Combining visitation rate and pollen deposition as measures of pollinator effectiveness, I found hummingbirds to be the most effective pollinators at both sites. Although hawkmoths also pollinate the flowers, they visit the flowers less frequently and, at one of the two sites, deposit less pollen. These results are consistent with the hypothesis that geographic variation in corolla size is the result of selection by different hummingbird species.  相似文献   

16.
Flower form is one of many floral features thought to be shaped by pollinator‐mediated selection. Although the drivers of variation in flower shape have often been examined in microevolutionary studies, relatively few have tested the relationship between shape evolution and shifts in pollination system across clades. In the present study, we use morphometric approaches to quantify shape variation across the Andean clade Iochrominae and estimate the relationship between changes in shape and shifts in pollination system using phylogenetic comparative methods. We infer multiple shifts from an ancestral state of narrow, tubular flowers toward open, bowl‐shaped, or campanulate flowers as well as one reversal to the tubular form. These transitions in flower shape are significantly correlated with changes in pollination system. Specifically, tubular forms tend to be hummingbird‐pollinated and the open forms tend to be insect‐pollinated, a pattern consistent with experimental work as well as classical floral syndromes. Nonetheless, our study provides one of the few empirical demonstrations of the relationship between flower shape and pollination system at a macroevolutionary scale.  相似文献   

17.
Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. Antagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was reconstructed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precondition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences.  相似文献   

18.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

19.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

20.
The generalization–specialization continuum exhibited in pollination interactions currently receives much attention. It is well-known that the pollinator assemblage of particular species varies temporally and spatially, and therefore the ecological generalization on pollinators may be a contextual attribute. However, the factors causing such variation and its ecological and evolutionary consequences are still poorly understood. This variation can be caused by spatial or temporal variation in the pollinator community, but also by variation in the plant community. Here, we examined how the floral neighbourhood influenced the generalization on pollinators and the composition of pollinators of six plant species differing in generalization levels and main pollinators. The diversity, identity and density of floral species affected both the level of generalization on pollinators and the composition of visitors of particular plant species. Although the relationships to floral neighbourhood varied considerably among species, generalization level and visitation by uncommon pollinators generally increased with floral diversity and richness. The generalization level of the neighbourhood was negatively related to the generalization level of the focal species in two species. The number of flowers of the pollinator-sharing species and the number of flowers of the focal species had different effects on the composition of visits in different species; attributable to differences in facilitation/competition for pollinator attraction. We propose that an important ecological implication of our results is that variation in species interactions caused by the pollination context may result in increased community stability. The main evolutionary implication of our results is that selection on flower and pollinator traits may depend, to an unknown extent, on the composition of the co-flowering plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号