首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CASPER  BRENDA B. 《Annals of botany》1990,65(5):489-492
Just after a size difference was apparent among the four single-ovulatesubunits in developing ovaries of Cryptantha flava (Boraginaceae),either the largest subunit or the three smaller were destroyedand final seed set and nutlet mass were scored. Results indicatethat most irreversible embryo abortion must occur during theestablishment of the size differences, and within a 24–48h period. Thinning a portion of the ovules does not affect finalnutlet mass. Embryo abortion, Cryptantha flava, ovule destruction experiments, seed size  相似文献   

2.
3.
Brenda B. Casper 《Oecologia》1996,106(2):144-152
The demographic consequences of a severe drought year were examined for two experimental plantings of the herbaceous desert perennial Cryptantha flava(Boraginaceae) in northeastern Utah, United States. A total of 6680 nutlets were planted individually or in clusters of four both under shrubs and in open microhabitats within two natural populations. Survival, growth, and flowering as a function of density and microhabitat were followed for 7 years, including 1 year when precipitation just before and during the growing season was 74.5% below normal. The design permitted assessment of how intraspecific density and shrub cover affect demographic response to drought. Mortality increased and flowering decreased dramatically during drought but neither varied with density or between shrub and open microhabitats. For plants growing under shrubs, survival (at Site 1) and growth (at Site 2) varied with shrub species. Average aboveground plant size also decreased during drought. Population size hierarchies were rearranged because larger plants lost leaf rosettes while many smaller plants grew. Density and microhabitat affected plant performance in non-drought years but more often at Site 1 than at Site 2. Individuals growing alone often were more likely to flower and/or produced more inflorescences when they did flower than did individuals growing with at least one other plant. However, for 2 years, survival rates at Site 1 were higher for plants growing in clumps than for single individuals. Shrubs also had mixed effects on plant performance. In some years, survival was higher under shrubs, but at Site 1 plants in the open often were more likely to flower and/or produced more inflorescences. Thus despite severe demographic consequences of drought, the study provided no evidence that intraspecific competition, interference by shrubs, or facilitation by shrubs increases under limited soil water.  相似文献   

4.
Summary Measurements were made of the photosynthetic gas exchange properties and water use efficiency of 19 species of mangrove in 9 estuaries with different salinity and climatic regimes in north eastern Australia and Papua New Guinea. Stomatal conductance and CO2 assimilation rates differed significantly between species at the same locality, with the salt-secreting species, Avicennia marina, consistently having the highest CO2 assimilation rates and stomatal conductances. Proportional changes in stomatal conductance and CO2 assimilation rate resulted in constant and similar intercellular CO2 concentrations for leaves exposed to photon flux densities above 800 mol·m-2·s-1 in all species at a particular locality. In consequence, all species at the same locality had similar water use efficiencies. There were, however, significant differences in gas exchange properties between different localities. Stomatal conductance and CO2 assimilation rate both decreased with increasing salinity and with increasing leaf to air vapour pressure deficit (VPD). Furthermore, the slope of the relationship between assimilation rate and stomatal conductance increased, while intercellular CO2 concentration decreased, with increasing salinity and with decreasing ambient relative humidity. It is concluded from these results that the water use efficiency of mangroves increases with increasing environmental stress, in this case aridity, thereby maximising photosynthetic carbon fixation while minimising water loss.Contribution No. 459 from the Australian Institute of Marine Science  相似文献   

5.
6.
Four-month old seedlings of pecan [Carya illinoensis (Wangenh) C. Koch] were either not flooded or flooded for 14 days, then transferred to well-drained conditions for 23 days. Water was withheld from one-half of the trees for 6 days, then trees were rewatered, and water was withheld from all trees. Leaf expansion, leaf dry weight, and the number of new leaves that developed were reduced by flooding, but not trunk or root dry weights. Evapotranspiration rates of flooded trees after transfer to well-drained conditions were initially higher than those of unflooded trees, but decreased to rates of control trees after 12 days. Flooding had no effect on photosynthesis after trees had been transferred to well-drained conditions for 23 days. Drought-stressed trees with leaf water potentials as low as − 1.93 MPa had lower leaf photosynthetic CO2 assimilation rate (A), transpiration (E), and leaf conductance to CO2 (gL) as compared to wellwatered trees. Leaf internal CO2 concentration (ci) was reduced only by the most severe water-stress treatment. Water use rates and relative water content were lower at the permanent wilting point during a second drought stress when trees had been exposed previously to drought stress.  相似文献   

7.
柯世省 《生物学杂志》2007,24(4):37-40,61
云锦杜鹃净光合速率和气孔导度日变化曲线为"双峰"型,光合效率午间明显降低,主要由非气孔限制引起。表观量子效率和实际光化学效率的降低是非气孔限制形成和发展的深层原因。蒸腾速率的日变化为"单峰型",午间最高。水分利用效率早晚较高、午间较低。净光合速率、蒸腾速率、气孔导度和水分利用效率分别与一些环境因子的相关性达到0.01或0.05显著水平。利用多元逐步回归方法分别得到了净光合速率、胞间CO2浓度、蒸腾速率、气孔导度和水分利用效率与环境因子的最优方程。  相似文献   

8.
The responses of gas exchange and water use efficiency to nitrogen nutrition for winter wheat were investigated under well-watered and drought conditions. The photosynthetic gas exchange parameters of winter wheat are remarkably improved by water and nitrogen nutrition and the regulative capability of nitrogen nutrition is influenced by water status. The effects of nitrogen nutrition on photosynthetic characteristics and on the limited factors to photosynthesis are not identical under different water status. Intrinsic water use efficiency (WUE(i)) of the plants at the high-N nutrition was decreased by a larger value than that of the plants in the low-N treatment due to a larger decrease in photosynthetic rate than in transpiration rate. Carbon isotope composition of plant material (delta(p)) is increased by the increase of drought intensity. The delta(p) at a given level of C(i)/C(a) is reduced by nitrogen deficiency. Leaf carbon isotope discrimination (Delta) is increased by the increase of nitrogen nutrition and decreased by the increase of drought intensity. Transpirational water use efficiency (WUE(t)) is negatively correlated with Delta in both nitrogen supply treatments and increased with the nitrogen supply.  相似文献   

9.
10.
The combination of two scion-one rootstock was used for two apple cultivars, ‘Pink Lady’ and ‘Qinguan’, budded on the same, one-year-old Malus hupehensis (Pamp.) Rehd. to reduce the impact of root and pot size and in order to understand the growth, water-use efficiency (WUE), and chlorophyll fluorescence characteristics. The two-scion grafted trees were planted in plastic pots under two water regimes, i.e. 70% field capacity (FC) and 55% FC. Results indicated that different scions were affected differently by drought stress. ‘Pink Lady’ had higher net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) compared with ‘Qinguan’ under both water treatments. However, ‘Qinguan’ had lower minimal fluorescence (F0), higher maximum fluorescence (Fm), and higher maximum photochemical efficiency of photosystem II (Fv/Fm) than ‘Pink Lady’ at 55% FC. Moreover, ‘Qinguan’ had larger shoot dry mass (ShDM) and higher intrinsic WUEI than ‘Pink Lady’ under both water status. Gas-exchange and growth parameters, except for P N and scion diameter, were significantly affected by the cultivar and water treatment. At 70% FC, ShDM was significantly correlated with WUEI. Moreover, WUEI was negatively linearly correlated with g s at either 70 or 55% FC. These results might indicate that ‘Pink Lady’ was more sensitive to drought than ‘Qinguan’. ‘Qinguan’ apple was able to improve WUE more than ‘Pink Lady’ under both well-watered and drought conditions. The growth parameters and photosynthetic capacity of two different scions showed that the combination of double scion-one rootstock might eliminate the influences of the rootstock and pot size.  相似文献   

11.
The seedlings of twenty eight annual and perennial desert plants belonging to fifteen families were raised under controlled growth conditions and subjected to a range of tests. The water use efficiency, photosynthesis, extreme temperatures and drought tolerance were monitored. The results were discussed for their ecological significance as a basic information to applied research. Seedlings which were more tolerant to extreme high and low temperatures and drought were more capable of controlling water loss through better water use efficiency. At temperatures below 25°C, the annual plants had higher photosynthetic rate than perennials, whereas at higher temperatures, the perennials were advantaged.  相似文献   

12.
The physiological responses of potato (Solanum tuberosum L. cv. Folva) to partial root-zone drying (PRD) were investigated in potted plants in a greenhouse (GH) and in plants grown in the field under an automatic rain-out-shelter. In the GH, irrigation was applied daily to the whole root system (FI), or to one-half of the root system while the other half was dried, for 9 d. In the field, the plants were drip irrigated either to the whole root system near field capacity (FI) or using 70% water of FI to one side of the roots, and shifted to the other side every 5-10 d (PRD). PRD plants had a similar midday leaf water potential to that of FI, whereas in the GH their root water potential (Psi(r)) was significantly lowered after 5 d. Stomatal conductance (g(s)) was more sensitive to PRD than photosynthesis (A) particularly in the field, leading to greater intrinsic water use efficiency (WUE) (i.e. A/g(s)) in PRD than in FI plants on several days. In PRD, the xylem sap abscisic acid concentration ([ABA](xylem)) increased exponentially with decreasing Psi(r); and the relative [ABA](xylem) (PRD/FI) increased exponentially as the fraction of transpirable soil water (FTSW) in the drying side decreased. In the field, the leaf area index was slightly less in PRD than in FI treatment, while tuber biomass was similar for the two treatments. Compared with FI, PRD treatment saved 30% water and increased crop water use efficiency (WUE) by 59%. Restrictions on leaf area expansion and g(s) by PRD-induced ABA signals might have contributed to reduced water use and increased WUE.  相似文献   

13.
Stefan Andersson 《Oecologia》1988,76(1):125-130
Summary Bumblebees foraging on the self-incompatible Anchusa officinalis fly between near neighbour plants and between near neighbour inflorescences within plants. Although many-flowered plants attracted most bumblebees these plants received fewer visits on a per flower basis than smaller plants, and each bumblebee visited a smaller proportion of the flowers. The calculated effective visitation rate per flower was highest on plants of an intermediate size. If pollen-carryover was assumed to be limited the most efficient plant was predicted to be smaller since the proportion of fertilized flowers per bumblebee visit is expected to decrease further on the largest plants in relation to the total flower number. These predictions were tested by measuring fruit-set in the field. The percentage fruit-set decreased with plant size at all sizes that were investigated. That the most efficient plant was small indicates that pollen-carryover was indeed limited. However, the low percentage fruit-set associated with large size did not present a serious problem since the total estimated seed production per plant still increased with size. Selection favoring smaller plants may be low or absent in Anchusa.  相似文献   

14.
Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO2 assimilation (A net), stomatal conductance (g s), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUEday) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO2 uptake responding to shifts in nighttime air temperature and humidity. The lowest WUEday occurred during time periods with extreme high and low air vapor pressure deficit (D a). The diurnal with the highest D a had low WUEday due to minimal net carbon gain across the 24 h period. Low WUEday was also observed under conditions of low D a; however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D a confirmed the relationship between D a and g s. Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments.  相似文献   

15.
In this review, I first address the basics of gas exchange, water‐use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water‐use efficiency in northern Australian tree species. In general, C3 plants face a trade‐off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water‐use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water‐use efficiency. This may explain why community‐level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water‐use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water‐use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole‐plant water‐use efficiency. Finally, I discuss the role of water‐use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2. In coming decades, increases in plant water‐use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.  相似文献   

16.
Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered.  相似文献   

17.
Light and temperature-response curves and their resulting coefficients, obtained within ecophysiological characterization of gas exchanges at the leaf level, may represent useful criteria for breeding and cultivar selection and required tools for simulation models aimed at the prediction of potential plant behaviour in response to environmental conditions.

Leaf-scale gas exchanges, by means of an IRGA open-flow system, were measured in response to light intensity (8 levels from 0 up to 2000 μmol m−2 s−1), CO2 concentrations (ambient—350 μmol mol−1 and short-term enriched—700 μmol mol−1) and air temperature (from 7 up to 35 °C) on three Vicia faba L. genotypes, each representing one of the three cultivated groups: major, equina and minor. The net assimilation rate response to light intensity was well described by an exponential rise to max function. The short-term CO2 enrichment markedly increased the values of light response curve parameters such as maximum photosynthetic rate (+80%), light saturation point (+40%) and quantum yield (+30%), while less homogenous behaviour was reported for dark respiration and light compensation point. For each light intensity level, the major and minor genotypes studied showed assimilation rates at least a 30% higher than equina.

The positive effects of short-term CO2 enrichment on photosynthetic water use efficiency (WUE) indicate a relevant advantage in doubling CO2 concentration. In the major and minor genotypes studied, similar assimilation rates, but different WUE were observed.

The optimum leaf temperature for assimilation process, calculated through a polynomial function, was 26–27 °C and no relevant limitations were observed in the range between 21 and 32 °C.

Analysis at the single leaf level provided both rapid information on the variations in gas exchange in response to environmental factors and selection criteria for the screening of genotypes.  相似文献   


18.
Continuous measurements of gas exchange characteristics were made on two to nine year old hydroponically grown Avicennia germinans (L.) Stearn, Aegialitis annulata R. Br. and Aegiceras corniculatum (L.) Blanco maintained at 50 or 500 mol m–3 NaCl. In Avicennia germinans and Aegialitis annulata, CO2 assimilation rates were initially higher at 500 mol m–3 NaCl and decreased gradually towards the end of the photoperiod when rates were similar to those at the lower salinity. In Aegiceras corniculatum, assimilation rates were higher at 50 mol m–3 NaCl and about 55% lower at the higher salinity. In all three species, leaf conductance and transpiration exhibited trends similar to those for CO2 assimilation. Intercellular CO2 concentrations were similar at both salinities in Avicennia germinans and Aegialitis annulata, but considerably higher at the lower salinity in Aegiceras corniculatum. Water use efficiencies (WUE), although similar between salinity treatments in Avicennia germinans and Aegialitis annulata, were greater at the higher salinity in Aegiceras corniculatum. Data obtained from CO2 response curves indicated that assimilation at high salinity in Aegiceras corniculatum was limited by conductance, and to a lesser extent, by photosynthetic capacity. In Avicennia germinans and Aegialitis annulata, assimilation was greater at the higher salinity as indicated by increase in both the initial slope and the upper plateau of the CO2 response data. Greater assimilation at high salinity in Avicennia germinans and Aegialitis annulata may be attributed to lower carbon losses via photorespiration and to efficient salt excretion and sequestration.  相似文献   

19.

Key message

Beech trees were able to cope with the drought of 2003. Harmful water shortage has been avoided by an effective stomatal closure while use of carbon storage pools may have prevented carbon starvation and growth reduction.

Abstract

We applied hydrodynamic modeling together with a tree ring stable isotope approach to identify the physiological responses of beech trees to changing environmental conditions. The drought conditions of the extreme hot and dry summer in 2003 were hypothesized to significantly influence the radial growth of European beech mainly triggered by the stomatal response towards water scarcity leading, in turn, to a decline in carbon assimilation. The functional–structural single tree modeling approach applied, revealed in fact a strong limitation of water use and carbon gain during drought. However, tree ring width data did not show a clear drought response and no differentiation in radial growth during six subsequent years examined (2002–2007) has been observed. Using integrated results from mechanistic carbon–water balance simulations, tree ring carbon and oxygen isotope analysis and tree ring width measurements we postulate that the suggested drought-induced growth decline has been prevented by the remobilization of stored carbohydrates, an early onset in growth and the relatively late occurrence of the severe drought in 2003. Furthermore, we demonstrate that the stomatal response played a significant role in avoiding harmful water tension that would have caused xylem dysfunction. As a result of the combined investigation with physiological measurements (stable isotope approach) and hydrodynamic modeling of stomatal aperture, we could give insights into the physiological control of mature beech tree functioning under drought. We conclude that beech trees have been operating at their hydraulic limits and that the longer or repeated drought periods would have affected the growth considerably.
  相似文献   

20.
We measured eddy covariance fluxes of CO2 and H2O over a flat irrigated olive orchard during growth, in different periods from Leaf Area Index (LAI) of 0.3–1.9; measurements of soil respiration were also collected. The daily net ecosystem exchange flux (FNEE) was practically zero at LAI around 0.4 or when the orchard intercepted 11% of the incoming daily radiation; at the end of the experiment, with LAI of 1.9 (and the fraction of intercepted daily radiation close to 0.5), FNEE was around 10 g CO2 m−2 day−1. The night-time ecosystem respiration (Reco), calculated from eddy fluxes in well-mixed night conditions, show a clear but non-linear dependence with LAI; it ranged from 0.05 to 0.15 mg CO2 m−2 s−1 (in average), being the lower limit ideally close to the heterotrophic soil respiration at the site. The gross primary production flux (FGPP) was linearly related to LAI within the LAI range of this experiment (with 11 g CO2 m−2 day−1 increments per unit of LAI) and to the fraction of intercepted radiation. The maximum rates of FGPP (0.75 mg CO2 m−2 s−1) were obtained in the summer mornings of 2002, at LAI close to 1.9. FGPP was strongly modulated by vapour pressure deficit (VPD) through the canopy conductance, even in absence of water stress. Hence, especially in the summer, the maximum rates of carbon assimilation are reached always before noon. The daily course of FGPP shows a two-phase pattern, first related to irradiance and then to canopy conductance. The water use efficiency (WUE) was, in average, 3.8, 6.3 and 7 g CO2 L−1 in 1999, 2001 and 2002, respectively, with maxima always in the early morning. Hourly WUE was strongly related to VPD (WUE = −10.25 + 22.52 × VPD−0.34). Our results suggest that drip irrigated orchards in general, and olive in particular, deserve specific carbon exchange and carbon budget studies and cannot be easily included in other biomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号