首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency. JB12 cooperates with cytosolic Hsc70 and the ubiquitin ligase RMA1 to target CFTR and CFTRΔF508 for degradation. Modest elevation of JB12 decreased nascent CFTR and CFTRΔF508 accumulation while increasing association of Hsc70 with ER forms of CFTR and the RMA1 E3 complex. Depletion of JB12 increased CFTR folding efficiency up to threefold and permitted a pool of CFTRΔF508 to fold and escape the ER. Introduction of the V510D misfolding suppressor mutation into CFTRΔF508 modestly increased folding efficiency, whereas combined inactivation of JB12 and suppression of intrinsic folding defects permitted CFTRΔF508 to fold at 50% of wild-type efficiency. Therapeutic correction of CFTRΔF508 misfolding in cystic fibrosis patients may require repair of defective folding kinetics and suppression of ER QC factors, such as JB12.  相似文献   

2.
Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.  相似文献   

3.
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.  相似文献   

4.
Most cystic fibrosis (CF) cases are caused by the ΔF508 mutation in the CF transmembrane conductance regulator (CFTR), which disrupts both the processing and gating of this chloride channel. The cell surface expression of ΔF508-CFTR can be "rescued" by culturing cells at 26-28 °C and treating cells with small molecule correctors or intragenic suppressor mutations. Here, we determined whether these various rescue protocols induce a ΔF508-CFTR conformation that is thermally stable in excised membrane patches. We also tested the impact of constitutive cytosolic loop mutations that increase ATP-independent channel activity (K978C and K190C/K978C) on ΔF508-CFTR function. Low temperature-rescued ΔF508-CFTR channels irreversibly inactivated with a time constant of 5-6 min when excised patches were warmed from 22 °C to 36.5 °C. A panel of CFTR correctors and potentiators that increased ΔF508-CFTR maturation or channel activity failed to prevent this inactivation. Conversely, three suppressor mutations in the first nucleotide binding domain rescued ΔF508-CFTR maturation and stabilized channel activity at 36.5 °C. The constitutive loop mutations increased ATP-independent activity of low temperature-rescued ΔF508-CFTR but did not enhance protein maturation. Importantly, the ATP-independent activities of these ΔF508-CFTR constructs were stable at 36.5 °C, whereas their ATP-dependent activities were not. Single channel recordings of this thermally stable ATP-independent activity revealed dynamic gating and unitary currents of normal amplitudes. We conclude that: (i) ΔF508-CFTR gating is highly unstable at physiologic temperature; (ii) most rescue protocols do not prevent this thermal instability; and (iii) ATP-independent gating and the pore are spared from ΔF508-induced thermal instability, a finding that may inform alternative treatment strategies.  相似文献   

5.
Cystic fibrosis (CF), the most common lethal genetic disease in the Caucasian population, is caused by loss-of-function mutations of the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated plasma membrane chloride channel. The most common mutation, deletion of phenylalanine 508 (ΔF508), impairs CFTR folding and, consequently, its biosynthetic and endocytic processing as well as chloride channel function. Pharmacological treatments may target the ΔF508 CFTR structural defect directly by binding to the mutant protein and/or indirectly by altering cellular protein homeostasis (proteostasis) to promote ΔF508 CFTR plasma membrane targeting and stability. This review discusses recent basic research aimed at elucidating the structural and trafficking defects of ΔF508 CFTR, a prerequisite for the rational design of CF therapy to correct the loss-of-function phenotype.  相似文献   

6.
Premature degradation of CFTRΔF508 causes cystic fibrosis (CF). CFTRΔF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRΔF508 folding efficiency and the identity of CFTRΔF508''s correctable folding defects is unclear. We report that inactivation of the RMA1 or CHIP ubiquitin ligase permits a pool of CFTRΔF508 to escape the endoplasmic reticulum. Combined RMA1 or CHIP inactivation and Corr-4a treatment enhanced CFTRΔF508 folding to 3–7-fold greater levels than those elicited by Corr-4a. Some, but not all, folding defects in CFTRΔF508 are correctable. CHIP and RMA1 recognize different regions of CFTR and a large pool of nascent CFTRΔF508 is ubiquitinated by RMA1 before Corr-4a action. RMA1 recognizes defects in CFTRΔF508 related to misassembly of a complex that contains MSD1, NBD1, and the R-domain. Corr-4a acts on CFTRΔF508 after MSD2 synthesis and was ineffective at rescue of ΔF508 dependent folding defects in amino-terminal regions. In contrast, misfolding caused by the rare CF-causing mutation V232D in MSD1 was highly correctable by Corr-4a. Overall, correction of folding defects recognized by RMA1 and/or global modulation of ER quality control has the potential to increase CFTRΔF508 folding and provide a therapeutic approach for CF.  相似文献   

7.
Cheung JC  Deber CM 《Biochemistry》2008,47(6):1465-1473
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.  相似文献   

8.
Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. We developed a fluorescence detection platform using fluorogen-activating proteins (FAPs) to directly detect FAP-CFTR trafficking to the cell surface using a cell-impermeant probe. By using this approach, we determined the efficacy of new corrector compounds, both alone and in combination, to rescue F508del-CFTR to the plasma membrane. Combinations of correctors produced additive or synergistic effects, improving the density of mutant CFTR at the cell surface up to ninefold over a single-compound treatment. The results correlated closely with assays of stimulated anion transport performed in polarized human bronchial epithelia that endogenously express F508del-CFTR. These findings indicate that the FAP-tagged constructs faithfully report mutant CFTR correction activity and that this approach should be useful as a screening assay in diseases that impair protein trafficking to the cell surface.  相似文献   

9.
Younger JM  Chen L  Ren HY  Rosser MF  Turnbull EL  Fan CY  Patterson C  Cyr DM 《Cell》2006,126(3):571-582
Cystic fibrosis arises from the misfolding and premature degradation of CFTR Delta F508, a Cl- ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTR Delta F508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing the E3 RMA1, the E2 Ubc6e, and Derlin-1 that cooperates with the cytosolic Hsc70/CHIP E3 complex to triage CFTR and CFTR Delta F508. Derlin-1 serves to retain CFTR in the ER membrane and interacts with RMA1 and Ubc6e to promote CFTR's proteasomal degradation. RMA1 is capable of recognizing folding defects in CFTR Delta F508 coincident with translation, whereas the CHIP E3 appears to act posttranslationally. A folding defect in CFTR Delta F508 detected by RMA1 involves the inability of CFTR's second membrane-spanning domain to productively interact with amino-terminal domains. Thus, the RMA1 and CHIP E3 ubiquitin ligases act sequentially in ER membrane and cytosol to monitor the folding status of CFTR and CFTR Delta F508.  相似文献   

10.
Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (ΔF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons (~10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders.  相似文献   

11.
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.  相似文献   

12.
The most common cause of CF (cystic fibrosis) is the deletion of Phe(508) (DeltaF508) in the CFTR [CF TM (transmembrane) conductance regulator] chloride channel. One major problem with DeltaF508 CFTR is that the protein is defective in folding so that little mature protein is delivered to the cell surface. Expression of DeltaF508 CFTR in the presence of small molecules known as correctors or pharmacological chaperones can increase the level of mature protein. Unfortunately, the efficiency of corrector-induced maturation of DeltaF508 CFTR is probably too low to have therapeutic value and approaches are needed to increase maturation efficiency. We postulated that expression of DeltaF508 CFTR in the presence of multiple correctors that bound to different sites may have an additive effect on maturation. In support of this mechanism, we found that expression of P-glycoprotein (CFTR's sister protein) processing mutants in the presence of two compounds that bind to different sites (rhodamine B and Hoechst 33342) had an additive effect on maturation. Therefore we tested whether expression of DeltaF508 CFTR in the presence of combinations of three different classes of corrector molecules would increase its maturation efficiency. It was found that the combination of the quinazoline VRT-325 together with the thiazole corr-2b or bisaminomethylbithiazole corr-4a doubled the steady-state maturation efficiency of DeltaF508 CFTR (approx. 40% of total CFTR was mature protein) compared with expression in the presence of a single compound. The additive effect of the correctors on DeltaF508 CFTR maturation suggests that they directly interact at different sites of the protein.  相似文献   

13.
Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function. Curcumin increased CFTR channel activity in excised, inside-out membrane patches by reducing channel closed time and prolonging the time channels remained open. Stimulation was dose-dependent, reversible, and greater than that observed with genistein, another compound that stimulates CFTR. Curcumin-dependent stimulation required phosphorylated channels and the presence of ATP. We found that curcumin increased the activity of both wild-type and DeltaF508 channels. Adding curcumin also increased Cl(-) transport in differentiated non-CF airway epithelia but not in CF epithelia. These results suggest that curcumin may directly stimulate CFTR Cl(-) channels.  相似文献   

14.
The phosphodiesterase-5 inhibitor sildenafil is an established and approved drug to treat symptoms of a variety of human diseases. In the context of cystic fibrosis (CF), a genetic disease caused by a defective CFTR gene (e.g. ΔF508-CFTR), it was assumed that sildenafil could be a promising substance to correct impaired protein expression. This study focuses on the molecular mechanisms of sildenafil on CFTR recovery. We used ΔF508-CFTR/wt-CFTR expressing Xenopus laevis oocytes and human bronchial epithelial cell lines (CFBE41o(-)/16HBE14o(-)) to investigate the pathways of sildenafil action. Cells were treated with sildenafil and cAMP-mediated current (I(m)), conductance (G(m)), and capacitance (C(m)) were determined. Sildenafil increased I(m), G(m), and C(m) of wt-CFTR and functionally restored ΔF508-CFTR in oocytes. These effects were also seen in CFBE41o(-) and 16HBE14o(-) cells. Transepithelial measurements revealed that sildenafil mediated increase (wt-CFTR) and restoration (ΔF508-CFTR) of channel activity. cGMP pathway blocker inhibited the activity increase but not CFTR/ΔF508-CFTR exocytosis. From these data we conclude that sildenafil mediates potentiation of CFTR activity by a cGMP-dependent and initiates cGMP-independent functional insertion of CFTR/ΔF508-CFTR molecules into the apical membranes. Thus, sildenafil is a corrector and potentiator of CFTR/ΔF508-CFTR. Yet, the necessary high doses of the drug for CFTR recovery demonstrate that sildenafil might not be suited as a therapeutic drug for CF lung disease.  相似文献   

15.
Cystic fibrosis (CF) is caused by mutations that disrupt the surface localization and/or gating of the CF transmembrane conductance regulator (CFTR) chloride channel. The most common CF mutant is deltaF508-CFTR, which inefficiently traffics to the surfaces of most cells. The deltaF508 mutation may also disrupt the opening of CFTR channels once they reach the cell surface, but the extent of this gating defect is unclear. Here, we describe potent activators of wild-type and deltaF508-CFTR channels that are structurally related to 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), a negatively charged pore blocker that we show to have mixed agonistic activity (channel activation plus voltage-dependent pore block). These CFTR agonists include 1) an uncharged NPPB analog that stimulates channel opening at submicromolar concentrations without blocking the pore and 2) curcumin, a dietary compound recently reported to augment deltaF508-CFTR function in mice by an unknown mechanism. The uncharged NPPB analog enhanced the activities of wild-type and deltaF508-CFTR channels both in excised membrane patches and in intact epithelial monolayers. This compound increased the open probabilities of deltaF508-CFTR channels in excised membrane patches by 10-15-fold under conditions in which wild-type channels were already maximally active. Our results support the emerging view that CFTR channel activity is substantially reduced by the deltaF508 mutation and that effective CF therapies may require the use of channel openers to activate mutant CFTR channels at the cell surface.  相似文献   

16.
In the vast majority of cystic fibrosis (CF) patients, deletion of residue F508 from CFTR is the cause of disease. F508 resides in the first nucleotide binding domain (NBD1) and its absence leads to CFTR misfolding and degradation. We show here that the primary folding defect arises during synthesis, as soon as NBD1 is translated. Introduction of either the I539T or G550E suppressor mutation in NBD1 partially rescues ΔF508 CFTR to the cell surface, but only I539T repaired ΔF508 NBD1. We demonstrated rescue of folding and stability of NBD1 from full-length ΔF508 CFTR expressed in cells to isolated purified domain. The co-translational rescue of ΔF508 NBD1 misfolding in CFTR by I539T advocates this domain as the most important drug target for cystic fibrosis.  相似文献   

17.
The most common mutation causing cystic fibrosis (CF) is deletion of phenylalanine residue 508 in the cystic fibrosis transmembrane regulator conductance (CFTR) protein. Small molecules that are able to correct the misfolding of defective ΔF508-CFTR have considerable promise for therapy. Reported here are the design, preparation, and evaluation of five more hydrophilic bisazole analogs of previously identified bithiazole CF corrector 1. Interestingly, bisazole ΔF508-CFTR corrector activity was not increased by incorporation of more H-bond acceptors (O or N), but correlated best with the overall bisazole molecular geometry. The structure activity data, together with molecular modeling, suggested that active bisazole correctors adopt a U-shaped conformation, and that corrector activity depends on the molecule’s ability to access this molecular geometry.  相似文献   

18.
The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.  相似文献   

19.
Most patients with Cystic Fibrosis (CF) carry at least one allele with the F508del mutation, resulting in a CFTR chloride channel protein with a processing, gating and stability defect, but with substantial residual activity when correctly sorted to the apical membranes of epithelial cells. New therapies are therefore aimed at improving the folding and trafficking of F508del CFTR, (CFTR correctors) or at enhancing the open probability of the CFTR chloride channel (CFTR potentiators). Preventing premature breakdown of F508del CFTR is an alternative or additional strategy, which is investigated in this study. We established an ex vivo assay for murine F508del CFTR rescue in native intestinal epithelium that can be used as a pre-clinical test for candidate therapeutics. Overnight incubation of muscle stripped ileum in modified William''s E medium at low temperature (26°C), and 4 h or 6 h incubation at 37°C with different proteasome inhibitors (PI: ALLN, MG-132, epoxomicin, PS341/bortezomib) resulted in fifty to hundred percent respectively of the wild type CFTR mediated chloride secretion (forskolin induced short-circuit current). The functional rescue was accompanied by enhanced expression of the murine F508del CFTR protein at the apical surface of intestinal crypts and a gain in the amount of complex-glycosylated CFTR (band C) up to 20% of WT levels. Sustained rescue in the presence of brefeldin A shows the involvement of a post-Golgi compartment in murine F508del CFTR degradation, as was shown earlier for its human counterpart. Our data show that proteasome inhibitors are promising candidate compounds for improving rescue of human F508del CFTR function, in combination with available correctors and potentiators.  相似文献   

20.
Deletion of phenylalanine 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane chloride channel is the most common cause of cystic fibrosis (CF). Though several maneuvers can rescue endoplasmic reticulum-retained ΔF508CFTR and promote its trafficking to the plasma membrane, rescued ΔF508CFTR remains susceptible to quality control mechanisms that lead to accelerated endocytosis, ubiquitination, and lysosomal degradation. To investigate the role of scaffold protein interactions in rescued ΔF508CFTR surface instability, the plasma membrane mobility of ΔF508CFTR was measured in live cells by quantum dot single particle tracking. Following rescue by low temperature, chemical correctors, thapsigargin, or overexpression of GRASP55, ΔF508CFTR diffusion was more rapid than that of wild-type CFTR because of reduced interactions with PDZ domain-containing scaffold proteins. Knock-down of the plasma membrane quality control proteins CHIP and Hsc70 partially restored ΔF508CFTR-scaffold association. Quantitative comparisons of CFTR cell surface diffusion and endocytosis kinetics suggested an association between reduced scaffold binding and CFTR internalization. Our surface diffusion measurements in live cells indicate defective scaffold interactions of rescued ΔF508CFTR at the cell surface, which may contribute to its defective peripheral processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号