首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.

Background and Aims

Growth imbalances between individual fruits are common in indeterminate plants such as cucumber (Cucumis sativus). In this species, these imbalances can be related to differences in two growth characteristics, fruit growth duration until reaching a given size and fruit abortion. Both are related to distribution, and environmental factors as well as canopy architecture play a key role in their differentiation. Furthermore, events leading to a fruit reaching its harvestable size before or simultaneously with a prior fruit can be observed. Functional–structural plant models (FSPMs) allow for interactions between environmental factors, canopy architecture and physiological processes. Here, we tested hypotheses which account for these interactions by introducing dominance and abortion thresholds for the partitioning of assimilates between growing fruits.

Methods

Using the L-System formalism, an FSPM was developed which combined a model for architectural development, a biochemical model of photosynthesis and a model for assimilate partitioning, the last including a fruit growth model based on a size-related potential growth rate (RP). Starting from a distribution proportional to RP, the model was extended by including abortion and dominance. Abortion was related to source strength and dominance to sink strength. Both thresholds were varied to test their influence on fruit growth characteristics. Simulations were conducted for a dense row and a sparse isometric canopy.

Key Results

The simple partitioning models failed to simulate individual fruit growth realistically. The introduction of abortion and dominance thresholds gave the best results. Simulations of fruit growth durations and abortion rates were in line with measurements, and events in which a fruit was harvestable earlier than an older fruit were reproduced.

Conclusions

Dominance and abortion events need to be considered when simulating typical fruit growth traits. By integrating environmental factors, the FSPM can be a valuable tool to analyse and improve existing knowledge about the dynamics of assimilates partitioning.  相似文献   

2.

Background and Aims

At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions.

Methods

Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions.

Key Results

Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis.

Conclusions

Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.  相似文献   

3.

Background and Aims

Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis.

Methods

Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same.

Key Results

Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis.

Conclusions

At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.  相似文献   

4.
Wang F  Kang M  Lu Q  Letort V  Han H  Guo Y  de Reffye P  Li B 《Annals of botany》2011,107(5):781-792

Background and Aims

Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analysis of its canopy architectural development and functions is valuable for better understanding its behaviour and roles in fragile ecosystems. However, due to the intrinsic complexity and variability of trees, the parametric identification of such models is currently a major obstacle to their evaluation and their validation with respect to real data. The aim of this paper was to present the mathematical framework of a stochastic functional–structural model (GL2) and its parameterization for Mongolian Scots pines, taking into account inter-plant variability in terms of topological development and biomass partitioning.

Methods

In GL2, plant organogenesis is determined by the realization of random variables representing the behaviour of axillary or apical buds. The associated probabilities are calibrated for Mongolian Scots pines using experimental data including means and variances of the numbers of organs per plant in each order-based class. The functional part of the model relies on the principles of source–sink regulation and is parameterized by direct observations of living trees and the inversion method using measured data for organ mass and dimensions.

Key Results

The final calibration accuracy satisfies both organogenetic and morphogenetic processes. Our hypothesis for the number of organs following a binomial distribution is found to be consistent with the real data. Based on the calibrated parameters, stochastic simulations of the growth of Mongolian Scots pines in plantations are generated by the Monte Carlo method, allowing analysis of the inter-individual variability of the number of organs and biomass partitioning. Three-dimensional (3D) architectures of young Mongolian Scots pines were simulated for 4-, 6- and 8-year-old trees.

Conclusions

This work provides a new method for characterizing tree structures and biomass allocation that can be used to build a 3D virtual Mongolian Scots pine forest. The work paves the way for bridging the gap between a single-plant model and a stand model.  相似文献   

5.

Background and Aims

Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods

A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes.

Key Results

In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %.

Conclusions

Based on the results, maintaining biochemical capacity of the middle–lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.  相似文献   

6.
7.

Background and Aims

Simulating nitrogen economy in crop plants requires formalizing the interactions between soil nitrogen availability, root nitrogen acquisition, distribution between vegetative organs and remobilization towards grains. This study evaluates and analyses the functional–structural and mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), developed for winter wheat (Triticum aestivum) after flowering.

Methods

NEMA was calibrated for field plants under three nitrogen fertilization treatments at flowering. Model behaviour was investigated and sensitivity to parameter values was analysed.

Key Results

Nitrogen content of all photosynthetic organs and in particular nitrogen vertical distribution along the stem and remobilization patterns in response to fertilization were simulated accurately by the model, from Rubisco turnover modulated by light intercepted by the organ and a mobile nitrogen pool. This pool proved to be a reliable indicator of plant nitrogen status, allowing efficient regulation of nitrogen acquisition by roots, remobilization from vegetative organs and accumulation in grains in response to nitrogen treatments. In our simulations, root capacity to import carbon, rather than carbon availability, limited nitrogen acquisition and ultimately nitrogen accumulation in grains, while Rubisco turnover intensity mostly affected dry matter accumulation in grains.

Conclusions

NEMA enabled interpretation of several key patterns usually observed in field conditions and the identification of plausible processes limiting for grain yield, protein content and root nitrogen acquisition that could be targets for plant breeding; however, further understanding requires more mechanistic formalization of carbon metabolism. Its strong physiological basis and its realistic behaviour support its use to gain insights into nitrogen economy after flowering.  相似文献   

8.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

9.

Background and Aims

The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional–structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity.

Methods

The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model.

Key Results

The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios.

Conclusions

The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.  相似文献   

10.
Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’.Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments.Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’.Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant–plant interactions.  相似文献   

11.
The outgrowth of tiller buds in Poaceae is influenced by the ratio of red to far-red light irradiance (R:FR). At each point in the plant canopy, R:FR is affected by light scattered by surrounding plant tissues. This paper presents a three-dimensional virtual plant modelling approach to simulate local effects of R:FR on tillering in spring wheat (Triticum aestivum). R:FR dependence of bud outgrowth was implemented in a wheat model, using three hypothetical responses of bud extension to R:FR (unit step, curvilinear and linear response). Bud break occurred when a threshold bud length was reached. Simulations were performed for three plant population densities. In accordance with experimental observations, fewer tillers per plant were simulated for higher plant population densities. The linear and curvilinear responses caused a delay in the increase in tiller number compared with experimental data. The unit step response approached experimental results best. It is suggested that a model based on relatively simple relations can be used to simulate degree of tillering. This study has shown that the virtual plant approach is a promising tool with which to address crop morphological and ecological research questions where the determining factors act at the level of the individual plant organ.  相似文献   

12.

Backgrounds and Aims

Functional–structural models are interesting tools to relate environmental and management conditions with forest growth. Their three-dimensional images can reveal important characteristics of wood used for industrial products. Like virtual laboratories, they can be used to evaluate relationships among species, sites and management, and to support silvicultural design and decision processes. Our aim was to develop a functional–structural model for radiata pine (Pinus radiata) given its economic importance in many countries.

Methods

The plant model uses the L-system language. The structure of the model is based on operational units, which obey particular rules, and execute photosynthesis, respiration and morphogenesis, according to their particular characteristics. Plant allometry is adhered to so that harmonic growth and plant development are achieved. Environmental signals for morphogenesis are used. Dynamic turnover guides the normal evolution of the tree. Monthly steps allow for detailed information of wood characteristics. The model is independent of traditional forest inventory relationships and is conceived as a mechanistic model. For model parameterization, three databases which generated new information relating to P. radiata were analysed and incorporated.

Key Results

Simulations under different and contrasting environmental and management conditions were run and statistically tested. The model was validated against forest inventory data for the same sites and times and against true crown architectural data. The performance of the model for 6-year-old trees was encouraging. Total height, diameter and lengths of growth units were adequately estimated. Branch diameters were slightly overestimated. Wood density values were not satisfactory, but the cyclical pattern and increase of growth rings were reasonably well modelled.

Conclusions

The model was able to reproduce the development and growth of the species based on mechanistic formulations. It may be valuable in assessing stand behaviour under different environmental and management conditions, assisting in decision-making with regard to management, and as a research tool to formulate hypothesis regarding forest tree growth and development.  相似文献   

13.
A model to evaluate photon transport within leaves and the implications for photosynthesis are investigated. A ray tracing model, Raytran, was used to produce absorption profiles within a virtual dorsiventral plant leaf oriented in two positions (horizontal/vertical) and illuminated on one of its two faces (adaxial/abaxial). Together with chlorophyll profiles, these absorption profiles feed a simple photosynthesis model that calculates the gross photosynthetic rate as a function of the incident irradiance. The differences observed between the four conditions are consistent with the literature: horizontal‐adaxial leaves, which are commonly found in natural conditions, have the greatest light use efficiency. The absorption profile obtained with horizontal‐abaxial leaves lies below this, but above those obtained for vertical leaves. The latter present similar gross photosynthetic rates when irradiated on either the adaxial or abaxial surfaces. Vertical profiles of photosynthetic rates across the leaf confirm that carbon fixation occurs mainly in the palisade parenchyma, that the leaf anatomy is integral to its function and that leaves cannot be considered as a single homogeneous unit. Finally, the relationships between leaf structure, orientation and photosynthesis are discussed.  相似文献   

14.
BACKGROUND AND AIMS: The production of axillary shoots (tillering) in spring wheat (Triticum aestivum) depends on intraspecific competition. The mechanisms that underlie this competition are complex, but light within the wheat canopy plays a key role. The main objectives of this paper are to analyse the effects of plant population density and shade on tillering dynamics of spring wheat, to assess the canopy conditions quantitatively at the time of tillering cessation, and to analyse the relationship between the tiller bud and the leaf on the same phytomer. METHODS: Spring wheat plants were grown at three plant population densities and under two light regimes (25 % and 100 % light). Tiller appearance, fraction of the light intercepted, and red : far-red ratio at soil level were recorded. On six sampling dates the growth status of axillary buds was analysed. KEY RESULTS: Tillering ceased earlier at high population densities and ceased earlier in the shade than in full sunlight. At cessation of tillering, both the fraction of light intercepted and the red : far-red ratio at soil level were similar in all treatments. Leaves on the same phytomer of buds that grew out showed more leaf mass per unit area than those on the same phytomer of buds that remained dormant. CONCLUSIONS: Tillering ceases at specific light conditions within the wheat canopy, independent of population density, and to a lesser extent independent of light intensity. It is suggested that cessation of tillering is induced when the fraction of PAR intercepted by the canopy exceeds a specific threshold (0.40-0.45) and red : far-red ratio drops below 0.35-0.40.  相似文献   

15.

Background and Aims

Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ɛ).

Methods

A functional–structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAIind) together with a genetic algorithm to find distributions of leaf angle (LA) and leaf photosynthetic capacity (Amax) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with Amax either unconstrained or constrained to an upper value consistent with reported values for Amax in A. saccharum.

Key Results

It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ɛ were simultaneously maximized. Maximization of ɛ required simultaneous adjustments in LA and Amax along gradients of PPFD in the plants. When Amax was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ɛ because PPFD incident on leaves was higher than the PPFD at which ɛmax was attainable. Average leaf ɛ in constrained plants nonetheless improved with increasing LAIind because of an increase in self-shading.

Conclusions

It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ɛ at the scale of leaves, which requires a highly integrated response between LA, Amax and LAIind. The results also suggest that to maximize ɛ plants have evolved mechanisms that co-ordinate the LA and Amax of individual leaves with PPFD availability.  相似文献   

16.

Background and Aims

The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat–Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments.

Methods

A field experiment was performed with winter wheat ‘Soissons’ grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined.

Key Results

Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations.

Conclusions

It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi-isogenic lines differing by single architectural traits.  相似文献   

17.

Background and Aims

An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions.

Methods

The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root.

Key Results

Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest.

Conclusions

This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.  相似文献   

18.
Andrographis paniculata Nees. (AP) is a self-pollinated medicinal herb with a wide range of pharmaceutical properties, facing a low diversity in Malaysia. Cross-pollination of AP accessions leads to considerable rates of heterosis in the agro-morphological characteristics and anticancer phytochemicals of this eminent medicinal herb. However, the poor crossability of the plant at the interpopulation or intraspecific levels is an obstacle from the evolutionary and breeding points of view as an average of 4.56% crossability was recorded for AP in this study. Hence, this research aimed to elicit the impact of parental genetic distances (GDs) on the rate of crossability of AP using seven accessions in 21 possible cross combinations. To this end, a set of 55 randomly amplified polymorphic DNA (RAPD) primers and a total of 13 agro-morphological markers were employed to test the hypothesis. Twenty-two out of the 55 RAPD primers amplified a total of 257 bands of which 107 bands were found to be polymorphic. The principal component analysis (PCA) based on the RAPD markers revealed that the studied AP accessions were distributed to three distinct groups. Furthermore, it was noticed that even a minor increase in GD between two parents can cause a decline in their crossability. Unlike, the morphological-based GDs acted neutrally to crossability. This finding suggests that, despite the low genetic diversity among the Malaysian APs, a population prescreening using RAPD markers would be useful to enhance the rate of fruit set through selecting the genetically adjacent parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号