首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

2.

Background and Aims

Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods

A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes.

Key Results

In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %.

Conclusions

Based on the results, maintaining biochemical capacity of the middle–lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.  相似文献   

3.

Background and Aims

Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis.

Methods

Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same.

Key Results

Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis.

Conclusions

At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.  相似文献   

4.

Background and Aims

Cotton (Gossypium hirsutum) has indeterminate growth. The growth regulator mepiquat chloride (MC) is used worldwide to restrict vegetative growth and promote boll formation and yield. The effects of MC are modulated by complex interactions with growing conditions (nutrients, weather) and plant population density, and as a result the effects on plant form are not fully understood and are difficult to predict. The use of MC is thus hard to optimize.

Methods

To explore crop responses to plant density and MC, a functional–structural plant model (FSPM) for cotton (named CottonXL) was designed. The model was calibrated using 1 year''s field data, and validated by using two additional years of detailed experimental data on the effects of MC and plant density in stands of pure cotton and in intercrops of cotton with wheat. CottonXL simulates development of leaf and fruits (square, flower and boll), plant height and branching. Crop development is driven by thermal time, population density, MC application, and topping of the main stem and branches.

Key Results

Validation of the model showed good correspondence between simulated and observed values for leaf area index with an overall root-mean-square error of 0·50 m2 m−2, and with an overall prediction error of less than 10 % for number of bolls, plant height, number of fruit branches and number of phytomers. Canopy structure became more compact with the decrease of leaf area index and internode length due to the application of MC. Moreover, MC did not have a substantial effect on boll density but increased lint yield at higher densities.

Conclusions

The model satisfactorily represents the effects of agronomic measures on cotton plant structure. It can be used to identify optimal agronomic management of cotton to achieve optimal plant structure for maximum yield under varying environmental conditions.  相似文献   

5.

Background and Aims

Vascular epiphytes have to acquire nutrients from atmospheric wash out, stem-flow, canopy soils and trapped litter. Physiological studies on the adaptations to nutrient acquisition and plant utilization of nutrients have focused on phosphorus and nitrogen; potassium, as a third highly abundant nutrient element, has received minor attention. In the present study, potassium uptake kinetics by leaves, within-plant distribution and nutrient accumulation were analysed to gain an improved understanding of physiological adaptations to non-terrestrial nutrient supply of plants.

Methods

Radioactively labelled 86RbCl was used as an analogue to study uptake kinetics of potassium absorbed from tanks of epiphytes, its plant distribution and the correlation between uptake efficiency and abundance of trichomes, functioning as uptake organs of leaves. Potassium in leaves was additionally analysed by atomic absorption spectroscopy to assess plant responses to potassium deficiency.

Key Results

Labelled rubidium was taken up from tanks over a wide range of concentrations, 0·01–90 mm, which was achieved by two uptake systems. In four tank epiphytes, the high-affinity transporters had average Km values of 41·2 µm, and the low-affinity transporters average Km values of 44·8 mm. Further analysis in Vriesea splenriet showed that high-affinity uptake of rubidium was an ATP-dependent process, while low-affinity uptake was mediated by a K+-channel. The kinetic properties of both types of transporters are comparable with those of potassium transporters in roots of terrestrial plants. Specific differences in uptake velocities of epiphytes are correlated with the abundance of trichomes on their leaf surfaces. The main sinks for potassium were fully grown leaves. These leaves thus function as internal potassium sources, which allow growth to be maintained during periods of low external potassium availability.

Conclusions

Vascular epiphytes possess effective mechanisms to take up potassium from both highly diluted and highly concentrated solutions, enabling the plant to incorporate this nutrient element quickly and almost quantitatively from tank solutions. A surplus not needed for current metabolism is stored, i.e. plants show luxury consumption.  相似文献   

6.

Background and Aims

There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses.

Methods

In the greenhouse, plants were exposed to salt spray (400 mm NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mm NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na+ concentrations, Na+ : K+ ratio, net K+/Na+ selectivity, N, P, K+, Ca2+, Mg2+, proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured.

Key Results

Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mm NaCl did not affect growth. However, at 200 mm NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mm NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na+ and proline concentrations, reduced K+, Ca2+ and Mg2+ concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0·95) with RZS concentrations and not with plant growth.

Conclusions

Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root zone salinities exceeding 100 mm NaCl.  相似文献   

7.

Background and Aims

The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional–structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity.

Methods

The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model.

Key Results

The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios.

Conclusions

The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.  相似文献   

8.

Background and Aims

Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivumPisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning.

Methods

First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea.

Key results

By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition.

Conclusions

In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly with respect to light partitioning.  相似文献   

9.

Background and Aims

The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.

Methods

Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.

Key Results

The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.

Conclusions

Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.  相似文献   

10.

Background and Aims

The capacity for fast-growth recovery after de-submergence is important for establishment of riparian species in a water-level-fluctuation zone. Recovery patterns of two wetland plants, Alternanthera philoxeroides and Hemarthria altissima, showing ‘escape’ and ‘quiescence’ responses, respectively, during submergence were investigated.

Methods

Leaf and root growth and photosynthesis were monitored continuously during 10 d of recovery following 20 d of complete submergence. Above- and below-ground dry weights, as well as carbohydrate concentrations, were measured several times during the experiment.

Key Results

Both species remobilized stored carbohydrate during submergence. Although enhanced internode elongation depleted the carbohydrate storage in A. philoxeroides during submergence, this species resumed leaf growth 3 d after de-submergence concomitant with restoration of the maximal photosynthetic capacity. In contrast, some sucrose was conserved in shoots of H. altissima during submergence, which promoted rapid re-growth of leaves 2 d after de-submergence and earlier than the full recovery of photosynthesis. The recovery of root growth was delayed by 1–2 d compared with leaves in both species.

Conclusions

Submergence tolerance of the escape and quiescence strategies entails not only the corresponding regulation of growth, carbohydrate catabolism and energy metabolism during submergence but also co-ordinated recovery of photosynthesis, growth and carbohydrate partitioning following de-submergence.  相似文献   

11.

Background and Aims

At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions.

Methods

Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions.

Key Results

Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis.

Conclusions

Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.  相似文献   

12.
13.

Background and Aims

The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability.

Methods

Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography.

Key Results

Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition.

Conclusions

Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses in alfalfa crop models.  相似文献   

14.

Background and Aims

Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated.

Methods

The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N.

Key Results

Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen.

Conclusions

The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems.  相似文献   

15.

Background and Aims

Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, ‘FR13A’ and ‘Arborio Precoce’, which show opposite traits in flooding response in terms of internode elongation and survival.

Methods

The growth and survival of rice varieties under submergence was investigated in the leaf sheath of ‘FR13A’ and ‘Arborio Precoce’. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH2-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively.

Key Results

Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. ‘Arborio Precoce’, which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. ‘FR13A’, which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in ‘FR13A’ but not in ‘Arborio Precoce’.

Conclusions

While ethylene controls aerenchyma formation in the fast-elongating ‘Arborio Precoce’ variety, in ‘FR13A’ ROS accumulation plays an important role.  相似文献   

16.

Background and Aims

Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots.

Methods

Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer.

Key Results

Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females.

Conclusions

It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.  相似文献   

17.
Proctor MC 《Annals of botany》2012,109(5):1019-1026

Background and Aims

Hymenophyllaceae (filmy ferns) are typically plants of shady, constantly moist habitats. They attain greatest species diversity and biomass in humid tropical montane forests and temperate hyperoceanic climates. This paper presents ecophysiological data bearing on their worldwide ecological niche space and its limits.

Methods

Chlorophyll fluorescence was used to monitor recovery in desiccation experiments, and for measurements of 95 % saturating irradiance [photosynthetic photon flux density (PPFD95 %)] of photosynthetic electron flow and other parameters, in the New Zealand Hymenophyllum sanguinolentum, and three species each of Hymenophyllum and Trichomanes from forests in Trinidad and Venezuela.

Key Results

Hymenophyllum sanguinolentum was comparable in desiccation tolerance and light responses with the European species. The more common species in the two tropical forests showed PPFD95 % >100 µmol m−2 s−1, and withstood moderate desiccation (–40 MPa) for several days. The four most shade-adapted species had PPFD95 % ≤51 µmol m−2 s−1, and were sensitive to even mild and brief desiccation (–22 MPa for 3 d).

Conclusions

Light and desiccation responses of filmy ferns can be seen as an integrated package. At low light and windspeed in humid forests, net radiation and saturation deficit are low, and diffusion resistance high. Water loss is slow and can be supported by modest conduction from the sub-stratum. With higher irradiance, selection pressure for desiccation tolerance increases progressively. With low light and high humidity, the filmy fern pattern of adaptation is probably optimal, and the vascular plant leaf with mesophyll and stomata offers no advantage in light capture, water economy or CO2 uptake. Trade-offs between light adaptation and desiccation tolerance, and between stem conduction and water absorption through the leaf surface, underlie adaptive radiation and niche differentiation of species within the family. Hymenophyllaceae are a rare example of an evolutionary shift of adaptive strategy from typical vascular plant adaptation to the poikilohydry most typical of bryophytes.  相似文献   

18.

Background and Aims

Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock.

Methods

Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol.

Key Results

Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent.

Conclusions

It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene–trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.  相似文献   

19.

Background and Aims

Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown.

Methods

Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China.

Key Results

Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production.

Conclusions

These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.  相似文献   

20.

Background and Aims

Red or purple coloration of leaf margins is common in angiosperms, and is found in approx. 25 % of New Zealand Veronica species. However, the functional significance of margin coloration is unknown. We hypothesized that anthocyanins in leaf margins correspond with increased phenolic content in leaf margins and/or the leaf entire, signalling low palatability or leaf quality to edge-feeding insects.

Methods

Five species of Veronica with red leaf margins, and six species without, were examined in a common garden. Phenolic content in leaf margins and interior lamina regions of juvenile and fully expanded leaves was quantified using the Folin–Ciocalteu assay. Proportions of leaf margins eaten and average lengths of continuous bites were used as a proxy for palatability.

Key Results

Phenolic content was consistently higher in leaf margins compared with leaf interiors in all species; however, neither leaf margins nor more interior tissues differed significantly in phenolic content with respects to margin colour. Mean phenolic content was inversely correlated with the mean length of continuous bites, suggesting effective deterrence of grazing. However, there was no difference in herbivore consumption of red and green margins, and the plant species with the longest continuous grazing patterns were both red-margined.

Conclusions

Red margin coloration was not an accurate indicator of total phenolic content in leaf margins or interior lamina tissue in New Zealand Veronica. Red coloration was also ineffective in deterring herbivory on the leaf margin, though studies controlling for variations in leaf structure and biochemistry (e.g. intra-specific studies) are needed before more precise conclusions can be drawn. It is also recommended that future studies focus on the relationship between anthocyanin and specific defence compounds (rather than general phenolic pools), and evaluate possible alternative functions of red margins in leaves (e.g. antioxidants, osmotic adjustment).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号