首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations of genetically identical Sinorhizobium fredii NGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genes traI and ngrI showed high levels of phenotypic heterogeneity during growth in TY medium on a single-cell level. However, adding very high concentrations of N-(3-oxooctanoyl-)-l-homoserine lactone resulted in a more homogeneous expression profile. Similarly, the lack of internally synthesized AIs in the background of the NGR234-ΔtraI or the NGR234-ΔngrI mutant resulted in a highly homogenous expression of the corresponding promoter fusions in the population. Expression studies with reporter fusions of the promoter regions of the quorum-quenching genes dlhR and qsdR1 and the type IV pilus gene cluster located on pNGR234b suggested that factors other than AI molecules affect NGR234 phenotypic heterogeneity. Further studies with root exudates and developing Arabidopsis thaliana seedlings provide the first evidence that plant root exudates have strong effects on the heterogeneity of AI synthase and quorum-quenching genes in NGR234. Therefore, plant-released octopine appears to play a key role in modulation of heterogeneous gene expression.  相似文献   

2.
Nitrogen-fixing symbiosis between bacteria and the tree legume mesquite (Prosopis glandulosa) is important for the maintenance of many desert ecosystems. Genes essential for nodulation and for extending the host range to mesquite were isolated from cosmid libraries of Rhizobium (mesquite) sp. strain HW17b and Bradyrhizobium (mesquite) sp. strain HW10h and were shown to be closely linked. All of the cosmid clones of rhizobia that extended the host range of Rhizobium (Parasponia) sp. strain NGR234CS to mesquite also supported nodulation of a Sym- mesquite strain. The cosmid clones of bradyrhizobia that extended the host range of Rhizobium (Parasponia) sp. strain NGR234CS to mesquite were only able to confer nodulation ability in the Sym- mesquite strain if they also contained a nodD-hybridizing region. Subclones containing just the nodD genes of either genus did not extend the host range of Rhizobium (Parasponia) sp. to mesquite, indicating that the nodD gene is insufficient for mesquite nodulation. The nodD gene region is conserved among mesquite-nodulating rhizobia regardless of the soil depth from which they were collected, indicating descent from a common ancestor. In a tree of distance relationships, the NodD amino acid sequence from mesquite rhizobia clusters with homologs from symbionts that can infect both herbaceous and tree legumes, including Rhizobium tropici, Rhizobium leguminosarum bv; phaseoli, Rhizobium loti, and Bradyrhizobium japonicum.  相似文献   

3.
Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide.  相似文献   

4.
A cosmid genomic library was prepared from a single individual of the rodent Spalax ehrenbergi, the mole rat, captured in Israel. The library was screened with a mouse probe hybridizing with all mouse class I major-histocompatibility-complex (Mhc) genes; the cross-hybridizing clones were isolated; and their restriction maps were prepared using five enzymes. A total of 93 class I-bearing clones could be identified in the library. Forty-five of these clones showed partial overlaps and could be arranged into 14 clusters. Eleven of these clusters could be shown to contain two class I genes each; the remaining clusters, as well as most of the non-overlapping clones, each contained one class I gene. After the elimination of clones with possible cloning artifacts and of clones that may carry allelic forms of a given gene in the heterozygous animal, the total number of class I loci identified in Spalax is approximately 65. The high number of loci probably arose from the duplication of either the entire class I set or the different class I families. The high number of gene copies might represent a means of selecting different functional genes from the family in different mammalian orders. Three of the approximately 65 Spalax class I genes cross-hybridize with a probe specific for the mouse K, D, and L genes; two of these genes are in the same cluster. These three elements might possibly be the functional class I genes of the mole rat.  相似文献   

5.
6.
Fifty-four clones containing human inserts were selected from a cosmid library constructed from a somatic cell hybrid containing chromosome 11p15.3-p15.5 as its only human complement. In 32 of these clones, 63 polymorphic systems were identified with a panel of restriction enzymes: 57 conventional RFLP systems and 6 highly polymorphic VNTR systems. Although we examined the cosmid with only seven enzymes, 18 clones (including 6 VNTRs) were polymorphic with three or more enzymes. The results suggested that DNA sequences on the peritelomeric region of chromosome 11p tend to be highly variable. Because these markers are highly informative, they will be excellent resources for investigations of hereditary diseases and tumor suppressor genes in this region of chromosome 11.  相似文献   

7.
Amongst prokaryotic genomes, those of nitrogen-fixing members of the Rhizobiaceae family are relatively large (6-9 Mb), often include mega-plasmids of 1.5-2 Mb, and contain numerous families of repeated DNA sequences. Although most essential nodulation and nitrogen fixation genes are well characterized, these represent only a small fraction of the DNA content. Little is known about the detailed structure of rhizobial genomes. With the development of sequencing techniques and new bio-informatic tools such studies become possible, however. Using the 2275 shotgun sequences of ANU265 (a derivative of NGR234 cured of pNGR234a), we have identified numerous families of repeats. Amongst these, the 58-bp-long NGRREP-4 represents the third most abundant DNA sequence after the RIME1 and RIME2 repeats, all of which are also found in Sinorhizobium meliloti. Surprisingly, studies on the distribution of these elements showed that in proportion to its size, the chromosome of NGR234 carries many more RIME modules than pNGR234a or pNGR234b. Together with the presence in NGR234 and S. meliloti 1021 of an insertion sequence (IS) element more conserved than essential nodulation and nitrogen fixation genes, these results give new insights into the origin and evolution of rhizobial genomes.  相似文献   

8.
Cooper  J.E.  Bjourson  A.J.  Streit  W.  Werner  D. 《Plant and Soil》1998,204(1):47-55
A subtraction hybridization and PCR amplification procedure was used to isolate two Rhizobium DNA probes which exhibited high degrees of specificity at different levels of taxonomic organization and which could be used as tools for detection of rhizobia in ecological studies. First, a probe was isolated from Rhizobium leguminosarum bv. trifolii strain P3 by removing those Sau3A restriction fragments from a P3 DNA digest which cross hybridized with pooled DNA from seven other strains of the same biovar. The remaining restriction fragments hybridized to DNA from strain P3 but not to DNA from any of the seven other strains. In a similar experiment another DNA probe, specific for the Rhizobium leguminosarum bv. phaseoli and Rhizobium tropici group, was generated by removing sequences from R. leguminosarum bv phaseoli strain Kim 5s with pooled subtracter DNA from eight other Rhizobium, Bradyrhizobium and Agrobacterium species. The same subtraction hybridization technique was also used to isolate symbiotic genes from a Rhizobium species. Results from a 1:1 subtractive DNA hybridization of the broad host range Rhizobium sp NGR234 against highly homologous S. fredii USDA257, combined with those from competitive RNA hybridizations to cosmid digests of the NGR234 symbiotic plasmid, allowed the identification of several NGR234 loci which were flavonoid-inducible and not present in S. fredii USDA257. One of these, ORF-1, was highly homologous to the leucine responsive regulatory protein of E. coli.  相似文献   

9.
Genome mapping in halobacteria   总被引:13,自引:0,他引:13  
The goal of our research is to produce an ordered set of cosmid clones for each of several species of halobacteria for use in physical and genetic mapping. These maps will answer questions about genome evolution and about gene organization and regulation in this archaebacterial lineage. Progress in cloning and mapping the genome of Halobacterium volcanii DS2 (synonym Haloferax volcanii DS2) is reported. Overlapping cosmids are recognized by a strategy which makes use of the distinctive restriction fragments around relatively rare restriction sites. Each site recognized by the infrequently cutting restriction enzymes is a landmark from which to identify different regions of the genome. The main advantage of this strategy is that only a small overlap (10-20%) between cosmid clones is required, resulting in a correspondingly small number of cosmid clones to be analyzed. The certainty of overlap is high, and computation is simple. The final 5-10% of each genome is cloned, linked, and identified by chromosome walking methods. Hybridization of cloned homologous or heterologous genes and of stable RNAs to the minimal cosmid set localizes these genes on the physical map. Additional genes have been and will be cloned by complementation of auxotrophic mutants, or as determinants of resistance to antibiotics.  相似文献   

10.
Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functionally interchangeable and similar in evolutionary origin. NGR234 exoC and exoY corresponded to R. meliloti exoB and exoF, respectively. NGR234 exoD was found to be an operon that included genes equivalent to exoM, exoA, and exoL in R. meliloti. Complementation of R. meliloti exoP, -N, and -G by NGR234 R'3222 indicated that additional equivalent genes remain to be found on the R-prime. We were not able to complement NGR234 exoB with R. meliloti DNA. In addition to functional and evolutionary equivalence of individual genes, the general organization of the exo regions was similar between the two species. It is likely that the same ancestral genes were used in the evolution of both exopolysaccharide biosynthetic pathways and probably of pathways in other species as well.  相似文献   

11.
In the presence of flavonoids, Rhizobium sp. strain NGR234 synthesizes a new lipopolysaccharide (LPS), characterized by a rhamnan O-antigen. The presence of this rhamnose-rich LPS is important for the establishment of competent symbiotic interactions between NGR234 and many species of leguminous plants. Two putative rhamnosyl transferases are encoded in a cluster of genes previously shown to be necessary for the synthesis of the rhamnose-rich LPS. These two genes, wbgA and rgpF, were mutated. The resulting mutant strains synthesized truncated rough LPS species rather than the wild-type rhamnose-rich LPS when grown with flavonoids. Based on the compositions of these purified mutant LPS species, we inferred that RgpF is responsible for adding the first one to three rhamnose residues to the flavonoid-induced LPS, whereas WbgA is necessary for the synthesis of the rest of the rhamnan O-antigen. The NGR234 homologue of lpsB, which, in other bacteria, encodes a glycosyl transferase acting early in synthesis of the core portion of LPS, was identified and also mutated. LpsB was required for all the LPS species produced by NGR234, in the presence or absence of flavonoids. Mutants (i.e., of lpsB and rgpF) that lacked any portion of the rhamnan O-antigen of the induced LPS were severely affected in their symbiotic interaction with Vigna unguiculata, whereas the NGR?wbgA mutant, although having very few rhamnose residues in its LPS, was able to elicit functional nodules.  相似文献   

12.
Rhizobium sp. NGR234 is a broad-host range strain. The rpoN gene of this organism encodes a sigma factor which is a primary co-regulator of endosymbiosis. We characterized the locus upstream of rpoN, and identified a contiguous open reading frame, here termed ORF1. DNA sequence analysis of this ORF showed that it encoded a polypeptide highly conserved with a corresponding ORF of Rhizobium meliloti. The gene product contained two ATP/GTP binding pockets. Codon usage in the ORF and the nitrogenase operon nifKDH of NGR234 was similar. Although we used a non-transposable cassette flanked by appropriate sized DNA fragments, we were unable to isolate site-directed mutants in the ORF, whose ATP/GTP binding protein product is thus probably of essential biological function. ORF1 and rpoN exhibited conserved linkage among diverse rhizobia, and in Azotobacter vinelandii. Intragenomic and interspecific homology studies confirmed directly that ORF1 (NGR234) belonged to a large family of ATP-binding protein genes.  相似文献   

13.
Symbiotic DNA sequences involved in nodulation by Rhizobium must include genes responsible for recognizing homologous hosts. We sought these genes by mobilizing the symbiotic plasmid of a broad host-range Rhizobium MPIK3030 (= NGR234) that can nodulate Glycine max, Psophocarpus tetragonolobus, Vigna unguiculata, etc., into two Nod- Rhizobium mutants as well as into Agrobacterium tumefaciens. Subsequently, cosmid clones of pMPIK3030a were mobilized into Nod+ Rhizobium that cannot nodulate the chosen hosts. Nodule development was monitored by examining the ultrastructure of nodules formed by the transconjugants. pMPIK3030a could complement Nod- and Nif- deletions in R. leguminosarum and R. meliloti as well as enable A. tumefaciens to nodulate. Three non-overlapping sets of cosmids were found that conferred upon a slow-growing Rhizobium species, as well as on R. loti and R. meliloti, the ability to nodulate Psophocarpus and Vigna, thus pointing to the existence of three sets of host-specificity genes. Recipients harboring these hsn regions had truly broadened host-range since they could nodulate both their original hosts as well as MPIK3030 hosts.  相似文献   

14.
We have constructed a genomic DNA library from a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400) in the cosmid vector pHC79. By utilizing a murine dihydrofolate reductase (DHFR) cDNA clone, we have identified 66 DHFR+ clones among the 11,000 colonies screened by colony hybridization. To isolate a recombinant cosmid containing the entire DHFR gene, we have tested these colonies for their ability to rescue a DHFR- Chinese hamster ovary cell line, using the spheroplast fusion method of gene transfer developed by W. Schaffner (Proc. Natl. Acad. Sci. U.S.A. 77:2163-2167, 1980). One clone (cH1) was able to transform DHFR- cells to the DHFR+ phenotype and was shown in hybridization studies to contain all of the gene except a small portion of the 3' untranslated region. We have mapped cosmid cH1 and several overlapping cosmids with a variety of restriction enzymes and have determined the approximate positions of the five (and possibly six) exons within the DHFR gene. Differences between the sizes of homologous genes in hamster cells (24.5 kilobases [kb]) and in mouse cells (31.5 kb) are shown to reside primarily in the length of the 3' intron, which is 8 kb in the hamster gene and 16 kb in length in the mouse gene. Our studies confirm the utility of cosmid libraries for the isolation of large genes, as previously shown by R. de Saint Vincent et al. (Cell 27:267-277, 1981). In addition, a cosmid that contains a functional DHFR gene will be a useful vector for the co-amplification and subsequent overexpression of other cloned genes.  相似文献   

15.
16.
17.
18.
Prospecting for novel biocatalysts in a soil metagenome   总被引:16,自引:0,他引:16  
The metagenomes of complex microbial communities are rich sources of novel biocatalysts. We exploited the metagenome of a mixed microbial population for isolation of more than 15 different genes encoding novel biocatalysts by using a combined cultivation and direct cloning strategy. A 16S rRNA sequence analysis revealed the presence of hitherto uncultured microbes closely related to the genera Pseudomonas, Agrobacterium, Xanthomonas, Microbulbifer, and Janthinobacterium. Total genomic DNA from this bacterial community was used to construct cosmid DNA libraries, which were functionally searched for novel enzymes of biotechnological value. Our searches in combination with cosmid sequencing resulted in identification of four clones encoding 12 putative agarase genes, most of which were organized in clusters consisting of two or three genes. Interestingly, nine of these agarase genes probably originated from gene duplications. Furthermore, we identified by DNA sequencing several other biocatalyst-encoding genes, including genes encoding a putative stereoselective amidase (amiA), two cellulases (gnuB and uvs080), an alpha-amylase (amyA), a 1,4-alpha-glucan branching enzyme (amyB), and two pectate lyases (pelA and uvs119). Also, a conserved cluster of two lipase genes was identified, which was linked to genes encoding a type I secretion system. The novel gene aguB was overexpressed in Escherichia coli, and the enzyme activities were determined. Finally, we describe more than 162 kb of DNA sequence that provides a strong platform for further characterization of this microbial consortium.  相似文献   

19.
The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, inactivation of the TTSS modifies the host range of the mutant so that it includes the improved Glycine max variety McCall. To assess the impact of individual TTSS-secreted proteins on symbioses with legumes, various attempts were made to identify nop genes. Amino-terminal sequencing of peptides purified from gels was used to characterize NopA, NopL, and NopX, but it failed to identify SR3, a TTSS-dependent product of USDA257. By using phage display and antibodies that recognize SR3, the corresponding protein of NGR234 was identified as NopP. NopP, like NopL, is an effector secreted by the TTSS of NGR234, and depending on the legume host, it may have a deleterious or beneficial effect on nodulation or it may have little effect.  相似文献   

20.
Enkerli J  Reed H  Briley A  Bhatt G  Covert SF 《Genetics》2000,155(3):1083-1094
Certain isolates of the plant pathogenic fungus Nectria haematococca mating population (MP) VI contain a 1.6-Mb conditionally dispensable (CD) chromosome carrying the phytoalexin detoxification genes MAK1 and PDA6-1. This chromosome is structurally unstable during sexual reproduction. As a first step in our analysis of the mechanisms underlying this chromosomal instability, hybridization between overlapping cosmid clones was used to construct a map of the MAK1 PDA6-1 chromosome. The map consists of 33 probes that are linked by 199 cosmid clones. The polymerase chain reaction and Southern analysis of N. haematococca MP VI DNA digested with infrequently cutting restriction enzymes were used to close gaps and order the hybridization-derived contigs. Hybridization to a probe extended from telomeric repeats was used to anchor the ends of the map to the actual chromosome ends. The resulting map is estimated to cover 95% of the MAK1 PDA6-1 chromosome and is composed of two ordered contigs. Thirty-eight percent of the clones in the minimal map are known to contain repeated DNA sequences. Three dispersed repeats were cloned during map construction; each is present in five to seven copies on the chromosome. The cosmid clones representing the map were probed with deleted forms of the CD chromosome and the results were integrated into the map. This allowed the identification of chromosome breakpoints and deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号