首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosomes released from different types of cells have been proposed to contribute to intercellular communication. We report that thymic exosome-like particles (ELPs) released from cells of the thymus can induce the development of Foxp3(+) regulatory T (Treg) cells in the lung and liver. Thymic ELPs also induce the conversion of thymic CD4(+)CD25(-) T cells into Tregs. Tregs induced by thymic ELPs suppress the proliferation of CD4(+)CD25(-) T cells in vitro and in vivo. We further show that neutralization of TGF-beta in ELPs partially reverses thymic ELP-mediated induction of CD4(+)Foxp3(+) T cells in the lung and liver. This study demonstrates that thymic ELPs participate in the induction of Foxp3(+) Tregs. Also, TGF-beta of thymic ELPs might be required for the generation of Tregs in the peripheral tissues.  相似文献   

2.
Defects in the Bcl-2-regulated apoptotic pathway inhibit the deletion of self-reactive T cells. What is unresolved, however, is the nature and fate of such self-reactive T cells escaping deletion. In this study, we report that mice with such defects contained increased numbers of CD25(low)Foxp3(+) cells in the thymus and peripheral lymph tissues. The increased CD25(low)Foxp3(+) population contained a large fraction of cells bearing self-reactive TCRs, evident from a prominent increase in self-superantigen-specific Foxp3(+)Vβ5(+)CD4(+) T cells in BALB/c Bim(-/-) mice compared with control animals. The survival rate of the expanded CD25(low)Foxp3(+) cells was similar to that of CD25(high)Foxp3(+) CD4 T cells in vitro and in vivo. IL-2R stimulation, but not TCR ligation, upregulated CD25 on CD25(low)Foxp3(+)CD4(+) T cells in vitro and in vivo. The expanded CD25(low)Foxp3(+)CD4(+) T cells from Bim(-/-) mice were anergic but also had weaker regulatory function than CD25(high)Foxp3(+) CD4(+) T cells from the same mice. Analysis of Bim(-/-) mice that also lacked Fas showed that the peripheral homeostasis of this expanded population was in part regulated by this death receptor. In conclusion, these results show that self-reactive T cell escapes from thymic deletion in mice defective in the Bcl-2-regulated apoptotic pathway upregulate Foxp3 and become unresponsive upon encountering self-Ag without necessarily gaining potent regulatory function. This clonal functional diversion may help to curtail autoaggressiveness of escaped self-reactive CD4(+) T cells and thereby safeguard immunological tolerance.  相似文献   

3.
We developed a transgenic (Tg) mouse that expresses TGF-beta under control of the IL-2 promoter to investigate Th3 cell differentiation both in vitro and in vivo. We previously found that repetitive in vitro Ag stimulation results in constant expression of Foxp3 in TGF-beta-Tg Th3 cells that acquire regulatory function independent of surface expression of CD25. To examine the differentiation and function of Th3 cells in vivo and to compare them with thymic-derived CD4(+)CD25(+) regulatory T cells (Treg), we introduced the TGF-beta transgene into T cells of IL-2-deficient (IL-2(-/-)) mice. We found that the induction, differentiation, and function of TGF-beta-derived Foxp3(+) Th3 cells were independent of IL-2, which differs from thymic Tregs. In an environment that lacks functional CD25(+) thymic-derived Tregs, expression of the TGF-beta transgene in IL-2(-/-) mice led to the induction of distinct CD25(-) regulatory cells in the periphery. These cells expressed Foxp3 and efficiently controlled hyperproliferation of T cells and rescued the IL-2(-/-) mouse from lethal autoimmunity. Unlike IL-2(-/-) animals, TGF-beta/IL-2(-/-) mice had normal numbers of T cells, B cells, macrophages, and dendritic cells and did not have splenomegaly, lymphadenopathy, or inflammation in multiple organs. Accumulation of Foxp3(+) cells over time, however, was dependent on IL-2. Our results suggest that TGF-beta-derived Foxp3(+)CD25(+/-) Th3 regulatory cells represent a different cell lineage from thymic-derived CD25(+) Tregs in the periphery but may play an important role in maintaining thymic Tregs in the peripheral immune compartment by secretion of TGF-beta.  相似文献   

4.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

5.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a central role in cancer tolerance. However, mechanisms leading to their accumulation in cancer remain unknown. Although the thymus is the main site of Treg development, thymic contribution to Treg expansion in cancer has not been directly examined. Herein, we used two murine models of multiple myeloma (MM), 5T2 MM and 5T33 MM, to examine Treg accumulation in peripheral lymphoid organs, including spleen, lymph nodes, bone marrow, and blood, and to explore thymic Treg development during malignancy. We found that peripheral ratios of suppressive-functional Tregs increased in both models of MM-inflicted mice. We found that thymic ratios of Treg development in MM increased, in strong association with thymus atrophy and altered developmental processes in the thymus. The CD4(+)CD8(+) double-positive population, normally the largest thymocyte subset, is significantly decreased, whereas the CD4(-)CD8(-) double-negative population is increased. Administration of thymocytes from MM-inflicted mice compared with control thymocytes resulted in increased progression of the disease, and this effect was shown to be mediated by Tregs in the thymus of MM-inflicted mice. Our data suggest that increased ratios of Treg development in the thymus may contribute to disease progression in MM-inflicted mice.  相似文献   

6.
Keratinocyte growth factor (KGF) has been shown to reduce the incidence and severity of graft-versus-host disease by prevention of epithelial damage and by modulating alloreactivity. Since regulatory T cells (Treg) play a crucial role in immune modulation, we evaluated the effects of exogenous KGF on peripheral CD4(+)Foxp3(+) Treg and the generation of Treg in the thymus of normal mice. A 3-day course of KGF induced a rapid selective increase in the number of highly suppressive CD4(+)Foxp3(+) Treg. Blood Treg numbers remained elevated for >2 mo, but the frequency normalized after 2 wk due to a concomitant increase in CD4(+)Foxp3(-) T cells. Analysis of single joint TCR excision circles frequency and Ki-67 expression in peripheral blood Treg showed that the early selective increase of Treg was predominantly accounted for by peripheral expansion. Thymectomy before KGF administration did not affect the early selective increase of Treg but abrogated the late increase in CD4(+) T cell numbers, thereby showing its dependence on thymic output. Collectively, these results show that KGF induces an increase in blood CD4(+)Foxp3(+) Treg numbers via two independent mechanisms. First by selective peripheral expansion of Treg and thereafter by enhanced thymic output of newly developed Treg.  相似文献   

7.
While natural CD4(+)Foxp3(+) regulatory T (nT(REG)) cells have long been viewed as a stable and distinct lineage that is committed to suppressive functions in vivo, recent evidence supporting this notion remains highly controversial. We sought to determine whether Foxp3 expression and the nT(REG) cell phenotype are stable in vivo and modulated by the inflammatory microenvironment. Here, we show that Foxp3(+) nT(REG) cells from thymic or peripheral lymphoid organs reveal extensive functional plasticity in vivo. We show that nT(REG) cells readily lose Foxp3 expression, destabilizing their phenotype, in turn, enabling them to reprogram into Th1 and Th17 effector cells. nT(REG) cell reprogramming is a characteristic of the entire Foxp3(+) nT(REG) population and the stable Foxp3(NEG) T(REG) cell phenotype is associated with a methylated foxp3 promoter. The extent of nT(REG) cell reprogramming is modulated by the presence of effector T cell-mediated signals, and occurs independently of variation in IL-2 production in vivo. Moreover, the gut microenvironment or parasitic infection favours the reprogramming of Foxp3(+) T(REG) cells into effector T cells and promotes host immunity. IL-17 is predominantly produced by reprogrammed Foxp3(+) nT(REG) cells, and precedes Foxp3 down-regulation, a process accentuated in mesenteric sites. Lastly, mTOR inhibition with the immunosuppressive drug, rapamycin, stabilizes Foxp3 expression in T(REG) cells and strongly inhibits IL-17 but not RORγt expression in reprogrammed Foxp3(-) T(REG) cells. Overall, inflammatory signals modulate mTOR signalling and influence the stability of the Foxp3(+) nT(REG) cell phenotype.  相似文献   

8.
9.
Genetic variants of interleukin 2 (IL-2) and its receptor are associated with murine and human susceptibility to Type 1 diabetes, yet the role of IL-2 in controlling pancreatic islet-reactive T cells is unknown. Here, we develop a model where IL-2 deficiency precipitates a breakdown of self-tolerance and progression to diabetes, and its action upon diabetogenic islet-specific CD4 T cells can be tracked. We find that IL-2 is not required for Aire-dependent thymic clonal deletion of high-avidity diabetogenic clones, but is essential for thymic formation of islet-specific Foxp3-expressing CD4 T cells. The absence of IL-2 results in the expansion of low-avidity Foxp3(-) islet-reactive CD4 T cells. The mechanism by which IL-2 prevents diabetes is therefore through the establishment of a repertoire of islet-reactive Foxp3(+) T cells within the thymus, and limitation of the peripheral activation of low-avidity islet-reactive T cells that normally escape thymic negative selection.  相似文献   

10.
One of the BB rat diabetes (diabetes mellitus (DM)) susceptibility genes is an Ian5 mutation resulting in premature apoptosis of naive T cells. Impaired differentiation of regulatory T cells has been suggested as one possible mechanism through which this mutation contributes to antipancreatic autoimmunity. Using Ian5 congenic inbred rats (wild-type (non-lyp BB) and mutated (BB)), we assessed the development of BB regulatory CD8(-)4(+)25(+)T cells and their role in the pathogenesis of DM. BB rats have normal numbers of functional CD8(-)4(+)25(+)Foxp3(+) thymocytes. The proportion of CD25(+) cells among CD8(-)4(+) recent thymic emigrants is also normal while it is increased among more mature CD8(-)4(+) T cells. However, BB CD8(-)4(+)25(+)Foxp3(+) thymocytes fail to undergo homeostatic expansion and survive upon transfer to nude BB rats while Foxp3 expression is reduced in mature CD8(-)4(+)25(+) T cells suggesting that these cells are mostly activated cells. Consistent with this interpretation, peripheral BB CD8(-)4(+)25(+) T cells do not suppress anti-TCR-mediated activation of non-lyp BB CD8(-)4(+)25(-) T cells but rather stimulate it. Furthermore, adoptive transfer of unfractionated T cells from diabetic BB donors induces DM in 71% of the recipients while no DM occurred when donor T cells are depleted of CD8(-)4(+)25(+) cells. Adoptive transfer of 10(6) regulatory non-lyp BB CD8(-)4(+)25(+) T cells to young BB rats protects the recipients from DM. Taken together, these results demonstrate that the BB rat Ian5 mutation alters the survival and function of regulatory CD8(-)4(+)25(+) T cells at the post-thymic level, resulting in clonal expansion of diabetogenic T cells among peripheral CD8(-)4(+)25(+) cells.  相似文献   

11.
IL-2 contributes to the production, function, and homeostasis of CD4+CD25+ T(reg) cells. However, it remains uncertain whether IL-2 is essential for the development of T(reg) cells in the thymus, their homeostasis in the periphery, or both. The present study was undertaken to investigate the contribution of IL-2 during thymic T(reg) cell development and its maintenance in peripheral immune tissue. Relying on genetic mouse models where IL-2R signaling was either completely blocked or selectively inhibited in peripheral CD4+CD25+ T(reg) cells, we show that the IL-2/IL-2R interaction is active in the thymus at the earliest stage of the development of T(reg) cells to promote their expansion and to up-regulate Foxp3 and CD25 to normal levels. Furthermore, CD4+CD25+Foxp3+ T(reg) cells with impaired IL-2-induced signaling persist in the periphery and control autoimmunity without constant thymic output. These peripheral T(reg) cells with poor responsiveness to IL-2 exhibited slower growth and extended survival in vivo, somewhat lower suppressive activity, and poor IL-2-dependent survival in vitro. Mixed thymic and bone marrow chimeric mice showed that wild-type-derived T(reg) cells were substantially more effective in populating peripheral immune tissue than T(reg) cells with impaired IL-2 signaling. Collectively, these data support the notion that normally IL-2 is a dominant mechanism controlling the number of thymic and peripheral T(reg) cells.  相似文献   

12.
Recent studies have shown that TGF-beta together with IL-6 induce the differentiation of IL-17-producing T cells (Th17) T cells. We therefore examined whether CD4(+)CD25(+)Foxp3(+) regulatory T cells, i.e., cells previously shown to produce TGF-beta, serve as Th17 inducers. We found that upon activation purified CD25(+) T cells (or sorted GFP(+) T cells obtained from Foxp3-GFP knockin mice) produce high amounts of soluble TGF-beta and when cultured with CD4(+)CD25(-)Foxp3(-) T cells in the presence of IL-6 induce the latter to differentiate into Th17 cells. Perhaps more importantly, upon activation, CD4(+)CD25(+)Foxp3(+)(GFP(+)) T cells themselves differentiate into Th17 cells in the presence of IL-6 (and in the absence of exogenous TGF-beta). These results indicate that CD4(+)CD25(+)Foxp3(+) regulatory T cells can function as inducers of Th17 cells and can differentiate into Th17 cells. They thus have important implications to our understanding of regulatory T cell function and their possible therapeutic use.  相似文献   

13.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

14.
Suppressor of cytokine signaling 1-deficient (SOCS1(-/-)) mice, which are lymphopenic, die <3 wk after birth of a T cell-mediated autoimmune inflammatory disease characterized by leukocyte infiltration and destruction of vital organs. Notably, Foxp3(+) regulatory T cells (Tregs) have been shown to be particularly potent in inhibiting inflammation-associated autoimmune diseases. We observed that SOCS1(-/-) mice were deficient in peripheral Tregs despite enhanced thymic development. The adoptive transfer of SOCS1-sufficient Tregs, CD4(+) T lymphocytes, or administration of SOCS1 kinase inhibitory region (KIR), a peptide that partially restores SOCS1 function, mediated a statistically significant but short-term survival of SOCS1(-/-) mice. However, the adoptive transfer of SOCS1-sufficient CD4(+) T lymphocytes, combined with the administration of SOCS1-KIR, resulted in a significant increase in the survival of SOCS1(-/-) mice both short and long term, where 100% death occurred by day 18 in the absence of treatment. Moreover, the CD4(+)/SOCS1-KIR combined therapy resulted in decreased leukocytic organ infiltration, reduction of serum IFN-γ, and enhanced peripheral accumulation of Foxp3(+) Tregs in treated mice. These data show that CD4(+)/SOCS1-KIR combined treatment can synergistically promote the long-term survival of perinatal lethal SOCS1(-/-) mice. In addition, these results strongly suggest that SOCS1 contributes to the stability of the Foxp3(+) Treg peripheral population under conditions of strong proinflammatory environments.  相似文献   

15.
TGF-beta has been shown to be critical in the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Because Th3 cells produce large amounts of TGF-beta, we asked whether induction of Th3 cells in the periphery was a mechanism by which CD4(+)CD25(+) Tregs were induced in the peripheral immune compartment. To address this issue, we generated a TGF-beta1-transgenic (Tg) mouse in which TGF-beta is linked to the IL-2 promoter and T cells transiently overexpress TGF-beta upon TCR stimulation but produce little or no IL-2, IL-4, IL-10, IL-13, or IFN-gamma. Naive TGF-beta-Tg mice are phenotypically normal with comparable numbers of lymphocytes and thymic-derived Tregs. We found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+)CD25(-) T cells from TGF-beta Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25(+) and CD25(-) populations. Both CD25 subsets were anergic and had potent suppressive properties in vitro and in vivo. Furthermore, adoptive transfer of these induced regulatory CD25(+/-) T cells suppressed experimental autoimmune encephalomyelitis when administrated before disease induction or during ongoing experimental autoimmune encephalomyelitis. The suppressive effect of TGF-beta on T cell responses was due to the induction of Tregs and not to the direct inhibition of cell proliferation. The differentiation of Th3 cells in vitro was TGF-beta dependent as anti-TGF-beta abrogated their development. Thus, Ag-specific TGF-beta-producing Th3 cells play a crucial role in inducing and maintaining peripheral tolerance by driving the differentiation of Ag-specific Foxp3(+) regulatory cells in the periphery.  相似文献   

16.
17.
18.
RasGRP1 and Sos are two Ras-guanyl-nucleotide exchange factors that link TCR signal transduction to Ras and MAPK activation. Recent studies demonstrate positive selection of developing thymocytes is crucially dependent on RasGRP1, whereas negative selection of autoreactive thymocytes appears to be RasGRP1 independent. However, the role of RasGRP1 in T regulatory (Treg) cell development and function is unknown. In this study, we characterized the development and function of CD4(+)CD25(+)Foxp3(+) and CD8(+)CD44(high)CD122(+) Treg lineages in RasGRP1(-/-) mice. Despite impaired CD4 Treg cell development in the thymus, the periphery of RasGRP1(-/-) mice contained significantly increased frequencies of CD4(+)Foxp3(+) Treg cells that possessed a more activated cell surface phenotype. Furthermore, on a per cell basis, CD4(+)Foxp3(+) Treg cells from mutant mice are more suppressive than their wild-type counterparts. Our data also suggest that the lymphopenic environment in the mutant mice plays a dominant role of favored peripheral development of CD4 Treg cells. These studies suggest that whereas RasGRP1 is crucial for the intrathymic development of CD4 Treg cells, it is not required for their peripheral expansion and function. By contrast to CD4(+)CD25(+)Foxp3(+) T cells, intrathymic development of CD8(+)CD44(high)CD122(+) Treg cells is unaffected by the RasGRP1(-/-) mutation. Moreover, RasGRP1(-/-) mice contained greater numbers of CD8(+)CD44(high)CD122(+) T cells in the spleen, relative to wild-type mice. Activated CD8 Treg cells from RasGRP1(-/-) mice retained their ability to synthesize IL-10 and suppress the proliferation of wild-type CD8(+)CD122(-) T cells, albeit at a much lower efficiency than wild-type CD8 Treg cells.  相似文献   

19.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

20.
A mutant strain with defective thymic selection of the Long-Evans Cinnamon (LEC) rat was found to spontaneously develop inflammatory bowel disease (IBD)-like colitis. The secretion of Th1-type cytokines including IFN-gamma and IL-2 from T cells of mesenteric lymph node cells (MLNs) and lamina propria mononuclear cells, but not spleen cells, in LEC rats was significantly increased more than that of the control Long-Evans Agouti rats through up-regulated expression of T-bet and phosphorylation of STAT-1 leading to NF-kappaB activation. In addition, the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells of the thymus, MLNs, and lamina propria mononuclear cells from LEC rats was significantly reduced, comparing with that of the control rats. Moreover, bone marrow cell transfer from LEC rats into irradiated control rats revealed significantly reduced CD25(+)Foxp3(+) Treg cells in thymus, spleen, and MLNs compared with those from control rats. Indeed, adoptive transfer with T cells of MLNs, not spleen cells, from LEC rats into SCID mice resulted in the development of inflammatory lesions resembling the IBD-like lesions observed in LEC rats. These results indicate that the dysfunction of the regulatory system controlled by Treg cells may play a crucial role in the development of IBD-like lesions through up-regulated T-bet, STAT-1, and NF-kappaB activation of peripheral T cells in LEC rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号