首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An earlier study of the morphological variation in the circumpolar genus Dryas in Greenland revealed that populations in east Greenland are highly variable and this variation was interpreted as a hybrid zone between D. octopetala and D. integrifolia. It was proposed that populations of Dryas in east Greenland immigrated postglacially from Svalbard. The purpose of our study was to investigate the population structure of the Dryas integrifolia-octopetala complex using a combination of morphological and genetic characters. Populations of Dryas were sampled in Greenland, Svalbard, Iceland and north Scandinavia (Sweden). The morphological traits clearly separated west Greenland from Svalbard, Iceland and north Scandinavia. A large number of individuals from east Greenland and some from north Greenland could be interpreted as hybrids between the morphs. The genetic pattern was, however, partly different as the greatest amount of differentiation among regions was found between west and north Greenland (FRT = 0.65). The highest degree of genetic variation appeared within east Greenland. This was in accordance with the putative hybrid origin of the populations, as concluded based on the morphological results. The total amount of genetic differentiation found among the six regions (FRT = 0.61) was larger than between the two species (FRT = 0.44). The genetic pattern matched the proposed postglacial migration routes.  相似文献   

2.
Hybrid zones provide interesting systems to study genetic and ecological interaction between different species. The correct identification of hybrids is necessary to understand the evolutionary process involved in hybridization. An oak species complex occurring in Mexico formed by two parental species, Quercus crassifolia H. & B. and Q. crassipes H. & B., and their putative hybrid species, Q. dysophylla, was analyzed with molecular markers (random amplified polymorphic DNA [RAPDs]) and morphological tools in seven hybrid zones (10 trees per taxa in each hybrid zone) and two pure sites for each parental species (20 trees per site). We tested whether geographic proximity of hybrid plants to the allopatric site of a parental species increases its morphological and genetic similarity with its parent. Seventeen morphological traits were measured in 8700 leaves from 290 trees. Total DNA of 250 individuals was analyzed with six diagnostic RAPD primers. Quercus crassifolia differed significantly from Q. crassipes in all the examined characters. Molecular markers and morphological characters were highly coincident and support the hypothesis of hybridization in this complex, although both species remain distinct in mixed stands. Clusters and a hybrid index (for molecular and morphological data) showed that individuals from the same parental species were more similar among themselves than to putative hybrids, indicating occasional hybridization with segregation in hybrid types or backcrossing to parents. Evidence does not indicate a unidirectional pattern of gene flow.  相似文献   

3.
Floral scent of Platanthera species (Orchidaceae) in S Sweden was collected by head-space adsorption methods in the field and analysed by gas chromatography-mass spectrometry (GC-MS). Variation in scent chemistry of both Platanthera bifolia and P. chlorantha was considerable: different scent chemotypes were found among individuals as well as populations. Mainly linalool, lilac aldehydes and alcohols, geraniol, and methyl benzoate distinguished the chemotypes. Because of a high individual variation, floral scent in Platanthera is not suitable as a taxonomic tool. Scent variation can be the result of differential selection from various pollinators or pollinator groups. However, in a long-spurred race of P. bifolia the scent profile was not clearly different from that of short-spurred races in spite of their different pollinators. The two species form natural hybrids and part of the variation at the individual level may he explained by interspecific introgression. Differences found among populations in different regions may be the result of random genetic drift.  相似文献   

4.
Aims Hybridization usually leads to gene introgression between related species in hybrid zones, associated with complex patterns of morphological variation. Nevertheless, previous studies have tended to ignore the effects of geographic variation in hybridization rates on species taxonomy. This study aims to investigate the variation of morphological traits between two sympatric and taxonomically confused oak species, Quercus liaotungensis and Q. mongolica, and reveal the effects of hybridization rates on morphological traits and the taxonomic boundary.Methods We used seven microsatellite loci to evaluate species status and measured 15 morphological traits in 26 trees in the recent hybrid zone between Q. liaotungensis and Q. mongolica, and we characterized the differences between the two oak species and their hybrids for the investigated traits.Important findings Molecular analyses indicated that 74% of 78 sampled maternal trees were hybrids between Q. liaotungensis and Q. mongolica although the observed morphological variation suggested that they had remained distinct species. Across all of the differentiated leaf and reproductive traits, the hybrids expressed patterns similar to Q. liaotungensis, which may suggest dominant expression of parental characters. These results are consistent with our expectation that hybrids will be difficult to distinguish from parental species in a recent hybrid zone.  相似文献   

5.
We examined the genetic composition, habitat use, and morphological variation of a Phoxinus eos-neogaeus unisexual hybrid complex and its sexually reproducing progenitor species inhabiting beaver-modified drainages of Voyageurs National Park, Minnesota. In addition to the single diploid P. eos-neogaeus gynogenetic clone, triploid and diploid-triploid mosaic biotypes were present at our study sites. Both P. eos and P. neogaeus, and all three hybrid biotypes were ubiquitous throughout one intensively surveyed drainage, but abundances and relative frequencies of the parental species and hybrids varied considerably within and among successional environments. Data from a large number of additional sites indicated that the proportion of polyploid hybrids within an environment was negatively related to hybrid relative frequency, implying that the genomic constitution of hybrids is an important determinant of clonal fitness among successional environments. Statistical comparisons of variation along size-free multivariate body shape axes indicated that despite its genetic uniformity, the P. eos-neogaeus clone is no less variable than its sexual progenitors, suggesting that a single genotype may actually respond to environmental variation with as much phenotypic variation as a genetically variable sexual population. The incorporation and expression of a third genome in triploid and diploid-triploid mosaic biotypes derived from the gynogenetic clone significantly expanded phenotypic variation of the clone. This additional variation results in greater similarities in habitat use and morphological overlap with the parental species, primarily P. eos, the predominant sperm donor for gynogenetic hybrid females in this complex. Polyploid augmentation of a diploid gynogenetic clone appears to be typical in the P. eos-neogaeus complex, and the additional genetic and phenotypic variation that it generates has potentially significant ecological and evolutionary consequences for the success and persistence of a single genotype in highly variable environments.  相似文献   

6.
BACKGROUND AND AIMS: The taxon complex comprising Quercus petraea and Q. robur shows distinct morphologies and ecological preferences, but mostly low differentiation in various types of molecular markers at a broad spatial range. Local, spatially explicit analyses may reveal patterns induced by microevolutionary processes operating mainly over short distances. However, no attempts have been made to date to explore the potential of spatial analyses combining morphological and genetic data of these oaks. METHODS: A mixed oak stand was studied to elucidate the small-scale population genetic structure. All adult individuals were classified and putative hybrids were identified using multivariate discrimination analysis of leaf morphological characters. Likewise, all trees were genotyped with five nuclear microsatellites, and a Bayesian assignment method was applied based on maximum likelihood of multilocus genotypes for taxon and putative hybrid classification. KEY RESULTS: Multivariate analyses of leaf morphological data recognized two groups with few individuals as putative hybrids. These groups were significantly differentiated at the five microsatellites, and genetic taxon assignment coincided well with morphological classification. Furthermore, most putative hybrids were assigned to the taxon found in their spatial neighbourhood. When grouping trees into clusters according to their spatial positions, these clusters were clearly dominated by one taxon. Discontinuities in morphological and genetic distance matrices among these clusters showed high congruence. CONCLUSIONS: The spatial-genetic analyses and the available literature led to the assumption that reproductive barriers, assortative mating, limited seed dispersal and microsite-induced selection in favour of the locally adapted taxon at the juvenile stage may reinforce taxon-specific spatial aggregation that fosters species separation. Thus, the results tend to support the hypothesis that Q. petraea and Q. robur are distinct taxa which share a recent common ancestry. Occasional hybrids are rarely found in adults owing to selection during establishment of juveniles.  相似文献   

7.
The smooth and the Montandon's newts (Triturus vulgaris and T. montandoni) are genetically similar sister species with highly divergent male secondary sexual traits involved in complex courtship behaviour. Their parapatric ranges overlap at moderate elevations in the Carpathian Mountains where they hybridize readily. Here we present a detailed study of genetic and morphological variation in populations from the area of sympatry. Analysis of variation at seven nuclear markers, mtDNA and male sexual secondary traits was complemented with an ecological survey of breeding sites characteristics. Extensive hybridization was revealed with back-cross individuals similar to either parental species predominating among hybrids. The hybrid zone exhibited a mosaic pattern: the genetic composition of the populations was correlated only weakly with their geographical position. No association with habitat type was found. Departures from Hardy-Weinberg proportions, significant linkage disequilibria and bimodal distribution of genotypes suggest strongly that assortative mating is an important factor shaping the genetic composition of hybrid populations. The pattern of cytonuclear disequilibria did not indicate much asymmetry in interspecific matings. Changes in the frequency of nuclear markers were highly concordant, whereas mtDNA showed much wider bidirectional introgression with 14% excess of T. montandoni haplotype. We argue that the mosaic structure of the newt hybrid zone results mainly from stochastic processes related to extinction and recolonization. Microgeographical differences in mtDNA introgression are explained by historical range shifts. Since morphologically intermediate males were underrepresented when compared to hybrid males identified by genetic markers, sexual selection acting against the morphological intermediates is implied. We discuss the implications of these findings in the context of reinforcement of prezygotic isolation in newts.  相似文献   

8.
Hybridisation and introgression occur with high frequency in the genus Quercus and interspecific hybrid individuals show patterns of morphological traits that might be influenced in different ways. Micromorphological leaf traits appear to be positive and stable in Quercus species, and by combining genetic and micromorphological analyses, it is possible to compare the patterns of variation in micromorphological leaf traits of pure and hybrid individuals. Trichomes and stomatal traits were examined using scanning electron microscopy at 150–2000 × magnification in sympatric oak species collected in a natural deciduous wood. Q. frainetto, Q. petraea and Q. pubescens appear to have a relatively predictable complement of trichome types. Both the pattern and quantitative values of each micromorphological trait examined (stomata and trichomes) have an important role in identifying hybrids and pure species; putative hybrids show a pattern of trichomes that is a combination of the parental types. These results, combined with the fact that micromorphological traits generally exhibit higher consistency, indicate that this source of information can be an excellent clue to hybridisation and introgression and useful in taxonomical, systematic and evolutionary studies on the European white oaks.  相似文献   

9.
Luna R  Epperson BK  Oyama K 《Heredity》2005,95(4):298-305
The spatial genetic structure within sympatric populations of two neotropical dioecious palm species with contrasting life histories was characterized to evaluate the influence of life history traits on the extent of genetic isolation by distance. Chamaedorea tepejilote is a common wind-pollinated arboreal understory palm. Chamaedorea elatior is an uncommon climbing subcanopy palm with entomophilous pollination syndrome. A total of 59 allozyme alleles for C. tepejilote and 53 alleles for C. elatior was analyzed using both unweighted (Iu) and weighted (Iw) Moran's I spatial autocorrelation statistics. The spatial genetic structure detected within these populations is consistent with those reported for highly dispersed plants. A significance test for differences between mean Moran's I-coefficients revealed less spatial genetic structure within the C. tepejilote population than that in the C. elatior population. Adjacent individuals of C. elatior exhibited significant spatial genetic autocorrelation (Iu=0.039, Iw=0.034), indicating a Wright's neighborhood size of about 100 individuals. For C. tepejilote, nonrandom genetic distribution among nearest neighbors was detected, even from small spatial autocorrelation values (Iu=0.008, Iw=0.009), consistent with a neighborhood size of about 300 individuals. For both species, seed dispersal, mortality among life cycle stages, overlapping generations, and contrasting traits of mating and reproduction influence the standing spatial genetic structure within populations.  相似文献   

10.
Phenotypic divergence in the male reproductive system (genitalia and gonads) between species of the Drosophila melanogaster complex and their hybrids was quantified to decipher the role of these traits in species differentiation and speciation. Internal as well as external, sexual and nonsexual traits were analyzed with respect to genetic variation and trait asymmetry between strains within species, genetic divergence between species, and dominance and asymmetry in species and hybrids. The variation between strains within species was significant among sexual traits, and only external traits were less asymmetric than internal ones, which suggests that sexual traits are not strongly constrained within species. Three main findings show that sexual traits are most divergent between species: (1) testis length and area, and the area of the posterior lobe of the genital arch (sexual traits) showed the highest proportion of variation between species; (2) linear discriminant functions with the highest components associated to sexual traits were better predictors of species membership; and (3) testis length and area revealed a departure from a linear relationship between members of the species group. Examination of interspecific hybrids showed that sexual traits had higher asymmetry in species hybrids than in the parental species and that sexual traits showed additivity or dominance whereas nonsexual traits showed overdominance (with the exception of malpighian tubules length). These results suggest that sexual traits have undergone more genetic changes and, as a result, tend to show higher divergence and stronger hybrid breakdown between species than nonsexual traits. We propose that sexual selection in the broad sense, affecting all aspects of sexuality, may be responsible for the diversified appearance of sexual traits among closely related species and that the genetic architecture underlying sexual traits may be more prone to disruption during the early stages of speciation.  相似文献   

11.
Spatial variation in natural selection may play an important role in determining the genetic structure of hybridizing populations. Previous studies have found that F1 hybrids between naturally hybridizing Ipomopsis aggregata and Ipomopsis tenuituba in central Colorado differ in fitness depending on both genotype and environment: hybrids had higher survival when I. aggregata was the maternal parent, except in the centre of the hybrid zone where both hybrid types had high survival. Here, we developed both maternally (cpDNA PCR-RFLP) and biparentally inherited (nuclear AFLP) species-diagnostic markers to characterize the spatial genetic structure of the natural Ipomopsis hybrid zone, and tested the prediction that the majority of natural hybrids have I. aggregata cytoplasm, except in areas near the centre of the hybrid zone. Analyses of 352 individuals from across the hybrid zone indicate that cytoplasmic gene flow is bidirectional, but contrary to expectation, most plants in the hybrid zone have I. tenuituba cytoplasm. This cytotype distribution is consistent with a hybrid zone in historical transition, with I. aggregata nuclear genes advancing into the contact zone. Further, nuclear data show a much more gradual cline than cpDNA markers that is consistent with morphological patterns across the hybrid populations. A mixture of environment- and pollinator-mediated selection may contribute to the current genetic structure of this hybrid system.  相似文献   

12.
Despite the commonality and study of hybridization in plants, there are few studies between invasive and noninvasive species that examine the genetic variability and gene flow of cytoplasmic DNA. We describe the phylogeographical structure of chloroplast DNA (cpDNA) variation within and among several interspecific populations of the putative native, Carpobrotus chilensis and the introduced, Carpobrotus edulis (Aizoaceae). These species co-occur throughout much of coastal California and form several 'geographical hybrid populations'. Two hundred and thirty-seven individuals were analysed for variation in an approximate 7.0 kb region of the chloroplast genome using PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) data. Phylogenetic analyses and cpDNA population differentiation were conducted for all morphotypes. Historic geographical dispersion and the coefficient of ancestry of the haplotypes were determined using nested clade analyses. Two haplotypic groupings (I and II) were represented in C. chilensis and C. edulis, respectively. The variation in cpDNA data is in agreement with the previously reported allozyme and morphological data; this supports relatively limited variation and high population differentiation among C. chilensis and hybrids and more wide-ranging variation in C. edulis and C. edulis populations backcrossed with C. chilensis. C. chilensis disproportionately contributes to the creation of hybrids with the direction of gene flow from C. chilensis into C. edulis. The cpDNA data support C. chilensis as the maternal contributor to the hybrid populations.  相似文献   

13.
We investigated patterns of within-species genetic variation for traits observed in hybrids (hybrid numbers, hybrid sex ratios, and hybrid male deformities) between two species of flour beetles, Tribolium castaneum and T. freemani. We found genetic variation segregating among four natural populations of T. castaneum as well as within these populations. For some hybrid traits, we observed as much variation among populations 750 km apart as between populations on different continents, suggesting genetic differentiation at a local scale. Within natural populations, the variation segregating among sires is greater than that found in an earlier study for an outbred laboratory population and comparable to that observed between inbred lines derived from the outbred stock by eight generations of brother-sister mating. When sires from T. castaneum are mated to conspecific and heterospecific females, we do not observe a significant correlation at the level of the family mean between the intraspecific and interspecific phenotypes, suggesting the independence of the hybrid traits from comparable traits within species. We discuss our findings in relation to the evolutionary genetics of speciation and the expression of epistatic genetic variance in interspecific crosses.  相似文献   

14.
Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P. densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P. densata were seeded in a high‐altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P. densata and between the two parental species, P. tabuliformis and P. yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P. densata. The eight needle traits (needle length, the mean number of stomata in sections 2 mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P. densata. The similar needle features between the artificial hybrids and P. densata could be used to verify the homoploid hybrid origin of P. densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.  相似文献   

15.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

16.
Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP) markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i) more heterogeneous genetic material, ii) higher genetic variation and therefore iii) the higher evolutionary potential of these stands, and iv) that the morphological differentiation (hybrid/not hybrid) is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material.  相似文献   

17.
The two closely related ash species Fraxinus excelsior L. (common ash) and Fraxinus angustifolia Vahl (narrow-leaved ash) have a broad contact zone in France where they hybridize. However, little is known about the local structure of hybrid zone populations and the isolation mechanisms. We assessed the potential effect of floral phenology on the structure of a riparian ash hybrid zone population in central France. The distribution of flowering times was unimodal and lay between the flowering periods of the two species. Using microsatellite markers, we detected isolation by time, which has possibly originated from assortative mating. Multivariate analyses indicated that morphological variation is not distributed at random with respect to flowering times. Spatial autocorrelation analyses showed that temporal and spatial patterns were tightly linked. Interestingly, despite the fact that the population shows isolation by time, neighbourhood size and historical dispersal variance (sigma = 63 m) are similar to those detected in pure stands of F. excelsior where individuals flower rather synchronously and hermaphrodites are not the most frequent sexual type. Trees flowering at intermediate dates, which comprised the majority of the population, produced on average more flowers and fruits. We detected no significant differences in floral parasite infections relative to reproductive timing, although there was a tendency for late flowering trees to suffer from more gall attack. We discuss the impact of temporal variation in fitness traits and their possible role in the maintenance of the hybrid zone.  相似文献   

18.
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.  相似文献   

19.
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first‐ and second‐generation hybrids produced by controlled crosses between either two co‐mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major‐effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.  相似文献   

20.
QTL analysis of floral traits in Louisiana iris hybrids   总被引:2,自引:0,他引:2  
The formation of hybrid zones between nascent species is a widespread phenomenon. The evolutionary consequences of hybridization are influenced by numerous factors, including the action of natural selection on quantitative trait variation. Here we examine how the genetic basis of floral traits of two species of Louisiana Irises affects the extent of quantitative trait variation in their hybrids. Quantitative trait locus (QTL) mapping was used to assess the size (magnitude) of phenotypic effects of individual QTL, the degree to which QTL for different floral traits are colocalized, and the occurrence of mixed QTL effects. These aspects of quantitative genetic variation would be expected to influence (1) the number of genetic steps (in terms of QTL substitutions) separating the parental species phenotypes; (2) trait correlations; and (3) the potential for transgressive segregation in hybrid populations. Results indicate that some Louisiana Iris floral trait QTL have large effects and QTL for different traits tend to colocalize. Transgressive variation was observed for six of nine traits, despite the fact that mixed QTL effects influence few traits. Overall, our QTL results imply that the genetic basis of floral morphology and color traits might facilitate the maintenance of phenotypic divergence between Iris fulva and Iris brevicaulis, although a great deal of phenotypic variation was observed among hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号