首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We investigated the role of IL-18 in leprosy, a disease characterized by polar cytokine responses that correlate with clinical disease. In vivo, IL-18 mRNA expression was higher in lesions from resistant tuberculoid as compared with susceptible lepromatous patients, and, in vitro, monocytes produced IL-18 in response to Mycobacterium leprae. rIL-18 augmented M. leprae-induced IFN-gamma in tuberculoid patients, but not lepromatous patients, while IL-4 production was not induced by IL-18. Anti-IL-12 partially inhibited M. leprae-induced release of IFN-gamma in the presence of IL-18, suggesting a combined effect of IL-12 and IL-18 in promoting M. leprae-specific type 1 responses. IL-18 enhanced M. leprae-induced IFN-gamma production rapidly (24 h) by NK cells and in a more sustained manner (5 days) by T cells. Finally, IL-18 directly induced IFN-gamma production from mycobacteria-reactive T cell clones. These results suggest that IL-18 induces type 1 cytokine responses in the host defense against intracellular infection.  相似文献   

2.
Transmembrane signaling adaptor DAP12 has increasingly been recognized for its important role in innate responses. However, its role in the regulation of antimicrobial T cell responses has remained unknown. In our current study, we have examined host defense, T cell responses, and tissue immunopathology in models of intracellular infection established in wild-type and DAP12-deficient mice. During mycobacterial infection, lack of DAP12 leads to pronounced proinflammatory and Th1 cytokine responses, overactivation of Ag-specific CD4 and CD8 T cells of type 1 phenotype, and heightened immunopathology both in the lung and lymphoid organs. DAP12-deficient airway APC display enhanced NF-kappaB activation and cytokine responses upon TLR stimulation or mycobacterial infection in vitro. Of importance, adoptive transfer of Ag-loaded DAP12-deficient APC alone could lead to overactivation of transferred transgenic or endogenous wild-type T cells in vivo. We have further found that the immune regulatory role by DAP12 is not restricted only to intracellular bacterial infection, since lack of this molecule also leads to uncontrolled type 1 T cell activation and severe immunopathology and tissue injury during intracellular viral infection. Our study thus identifies DAP12 as an important novel immune regulatory molecule that acts, via APC, to control the level of antimicrobial type 1 T cell activation and immunopathology.  相似文献   

3.
To date, no reports have linked the multifunctional protein, staphylococcal nuclease domain-containing protein 1 (SND1), to host defense against intracellular infections. In this study, we investigated the role and mechanisms of SND1, by using SND1 knockout (SND1-/-) mice, in host defense against the lung infection of Chlamydia muridarum, an obligate intracellular bacterium. Our data showed that SND1-/- mice exhibited significantly greater body weight loss, higher organism growth, and more severe pathological changes compared with wild-type mice following the infection. Further analysis showed significantly reduced Chlamydia-specific Th1/17 immune responses in SND1-/- mice after infection. Interestingly, the dendritic cells (DCs) isolated from SND1-/- mice showed lower costimulatory molecules expression and IL-12 production, but higher IL-10 production compared with those from wild-type control mice. In the DC-T cell co-culture system, DCs isolated from SND1-/- infected mice showed significantly reduced ability to promote Chlamydia-specific IFN-γ producing Th1 cells but enhanced capacity to induce CD4+T cells into Foxp3+ Treg cells. Adoptive transfer of DCs isolated from SND1-/- mice, unlike those from wild-type control mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that SND1 plays an important role in host defense against intracellular bacterial infection, and suggest that SND1 can promote Th1/17 immunity and inhibit the expansion of Treg cells through modulation of the function of DCs.  相似文献   

4.
There is strong epidemiological evidence that Chlamydia infection can lead to exacerbation of asthma. However, the mechanism(s) whereby chlamydial infection, which normally elicits a strong Th type 1 (Th1) immune response, can exacerbate asthma, a disease characterized by dominant Th type 2 (Th2) immune responses, remains unclear. In the present study, we show that Chlamydia muridarum infection of murine bone marrow-derived dendritic cells (BMDC) modulates the phenotype, cytokine secretion profile, and Ag-presenting capability of these BMDC. Chlamydia-infected BMDC express lower levels of CD80 and increased CD86 compared with noninfected BMDC. When infected with Chlamydia, BMDC secrete increased TNF-alpha, IL-6, IL-10, IL-12, and IL-13. OVA peptide-pulsed infected BMDC induced significant proliferation of transgenic CD4(+) DO11.10 (D10) T cells, strongly inhibited IFN-gamma secretion by D10 cells, and promoted a Th2 phenotype. Intratracheal transfer of infected, but not control noninfected, OVA peptide-pulsed BMDC to naive BALB/c mice, which had been i.v. infused with naive D10 T cells, resulted in increased levels of IL-10 and IL-13 in bronchoalveolar lavage fluid. Recipients of these infected BMDC showed significant increases in airways resistance and decreased airways compliance compared with mice that had received noninfected BMDC, indicative of the development of airways hyperreactivity. Collectively, these data suggest that Chlamydia infection of DCs allows the pathogen to deviate the induced immune response from a protective Th1 to a nonprotective Th2 response that could permit ongoing chronic infection. In the setting of allergic airways inflammation, this infection may then contribute to exacerbation of the asthmatic phenotype.  相似文献   

5.
Regulation of T cell immunity by dendritic cells   总被引:97,自引:0,他引:97  
Lanzavecchia A  Sallusto F 《Cell》2001,106(3):263-266
  相似文献   

6.
NK cells are critical effector cells of the innate immune response to malignancy and infection. These cells have a wide array of direct antiviral activities and have been critically implicated in the regulation and induction of an effective adaptive immune response. Although the pivotal role of this cell subset in the context of a number of viral infections is well established, the role of NK cells in HIV-1 infection is less well understood. Recent data has demonstrated the association between an NK cell receptor, KIR3DS1, and it's ligand, HLA-Bw4 with an isoleucine at position 80, and slower disease progression. This data suggests that NK cells may play an essential role in the control of HIV-1 disease, and has provided the impetus to begin to better understand the role of this cell subset in the context of HIV-1 infection, replication, and pathogenesis. Here we present a review of the literature pertaining to both the effect of HIV-1 infection on NK cell activity and the potential role that this subset of cells may play in controlling HIV-1 disease.  相似文献   

7.
The type of immune response generated following exposure to Ag depends on a variety of factors, including the nature of the Ag, the type of adjuvant used, the site of antigenic entry, and the immune status of the host. We have previously shown that infection of rodents with Nippostrongylus brasiliensis (Nb) shifts the development of type 1 allo-specific responses toward type 2 immunity, suggesting nematode modulation of T cell activation. In this report we explore the immunomodulatory effects of Nb on T cell activation. We found that spleen cells from Nb-infected mice exhibited dramatically increased proliferation in response to Con A and anti-CD3. This hyperproliferation could be transferred in vitro to naive splenocytes by coculture with mitomycin C-treated cells from Nb-infected animals. The transfer was mediated by non-T accessory cells and supernatants derived from Con A-activated non-T cells, suggesting the involvement of a soluble factor secreted by accessory cells. The accessory cells secreted high levels of IL-6, and anti-IL-6 treatment abrogated the supernatant-induced hyperproliferation, thus confirming that IL-6 was mediating the effect. Further, spleen cells from Nb-infected mice were more resistant to activation-induced cell death (AICD) following mitogenic stimulation. Reduced AICD was also transferable and IL-6 dependent. Thus, the hyperproliferation was in part due to enhanced activated T cell survival. These phenomena mediated by accessory cells may contribute to the powerful polyclonal activation of type 2 immunity caused by nematode infection.  相似文献   

8.
We previously demonstrated that IL-4 gene-transfected glioma cell vaccines induce effective therapeutic immunity in preclinical glioma models, and have initiated phase I trials of these vaccines in patients with malignant gliomas. To gain additional mechanistic insight into the efficacy of this approach, we have treated mice bearing the MCA205 (H-2(b)) or CMS-4 (H-2(d)) sarcomas. IL-12/23 p40(-/-) and IFN-gamma(-/-) mice, which were able to reject the initial inoculation of IL-4 expressing tumors, failed to mount a sustained systemic response against parental (nontransfected) tumor cells. Paracrine production of IL-4 in vaccine sites promoted the accumulation and maturation of IL-12p70-secreting tumor-infiltrating dendritic cells (TIDCs). Adoptive transfer of TIDCs isolated from vaccinated wild-type, but not IL-12/23 p40(-/-), mice were capable of promoting tumor-specific CTL responses in syngeneic recipient animals. Interestingly, both STAT4(-/-) and STAT6(-/-) mice failed to reject IL-4-transfected tumors in concert with the reduced capacity of TIDCs to produce IL-12p70 and to promote specific antitumor CTL reactivity. These results suggest that vaccines consisting of tumor cells engineered to produce the type 2 cytokine, IL-4, critically depend on type 1 immunity for their observed therapeutic efficacy.  相似文献   

9.
The roles(s) of CD8 T cells during infections by intracellular bacteria that reside in host cell endocytic compartments are not well understood. Our previous studies in a mouse model of human monocytotropic ehrlichiosis indicated that CD8 T cells are not essential for immunity. However, we have observed an unexpected role for these cells during challenge infection. Although immunocompetent mice cleared a primary low-dose (nonfatal) Ixodes ovatus ehrlichia infection, a secondary low-dose challenge infection resulted in fatal disease and loss of control of infection. The outcome was CD8-dependent, because CD8-deficient mice survived secondary low-dose challenge infection. Moreover, effector and/or memory phenotype CD8 T cells were responsible, because adoptive transfer of purified CD44(high) CD8 T cells to naive mice induced fatal responses following a primary low-dose infection. The fatal responses were perforin- and Fas ligand-independent, and were associated with high serum concentrations of TNF-alpha and CCL2, and low levels of IL-10. Accordingly, blockade of either TNF-alpha or CCL2 ameliorated fatal recall responses, and in vitro coculture of memory CD8 T cells and Ixodes ovatus ehrlichia-infected peritoneal exudate cells resulted in substantial increases in TNF-alpha and CCL2. Thus, during monocytotropic ehrlichiosis, inflammatory cytokine production, by CD8 T cells and/or other host cells, can trigger chemokine-dependent disease. These findings highlight a novel role for CD8 T cells, and reveal that live vaccines for intracellular bacteria can, under some conditions, induce undesirable consequences.  相似文献   

10.
《Cell reports》2023,42(4):112310
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

11.
We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M. tuberculosis-infected monocytes. The frequency of CD8+ IFN-gamma+ cells was restored by soluble factors produced by activated NK cells and was dependent on IFN-gamma, IL-15, and IL-18. M. tuberculosis-activated NK cells produced IFN-gamma, activated NK cells stimulated infected monocytes to produce IL-15 and IL-18, and production of IL-15 and IL-18 were inhibited by anti-IFN-gamma. These findings suggest that NK cells maintain the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ T cells by producing IFN-gamma, which elicits secretion of IL-15 and IL-18 by monocytes. These monokines in turn favor expansion of Tc1 CD8+ T cells. The capacity of NK cells to prime CD8+ T cells to lyse M. tuberculosis-infected target cells required cell-cell contact between NK cells and infected monocytes and depended on interactions between the CD40 ligand on NK cells and CD40 on infected monocytes. NK cells link the innate and the adaptive immune responses by optimizing the capacity of CD8+ T cells to produce IFN-gamma and to lyse infected cells, functions that are critical for protective immunity against M. tuberculosis and other intracellular pathogens.  相似文献   

12.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/-) mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/-) mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.  相似文献   

13.
In vitro, dendritic cells (DCs) bind and transfer intact, infectious HIV to CD4 T cells without first becoming infected, a process known as trans-infection. trans-infection is accomplished by recruitment of HIV and its receptors to the site of DC-T cell contact and transfer of virions at a structure known as the infectious synapse. In this study, we used fluorescent microscopy to track individual HIV particles trafficking in DCs during virus uptake and trans-infection. Mature DCs rapidly concentrated HIV into an apparently intracellular compartment that lacked markers characteristic of early endosomes, lysosomes, or antigen-processing vesicles. Live cell microscopy demonstrated that the HIV-containing compartment was rapidly polarized toward the infectious synapse after contact with a T cell; however, the bulk of the concentrated virus remained in the DCs after T cell engagement. Individual virions were observed emerging from the compartment and fusing with the T cell membrane at the infectious synapse. The compartmentalized HIV, although engulfed by the cytoplasm, was fully accessible to HIV envelope-specific inhibitors and other membrane-impermeable probes that were delivered to the cell surface. These results demonstrate that HIV resides in an invaginated domain within DCs that is both contiguous with the plasma membrane and distinct from endocytic vesicles. We conclude that HIV virions are routed through this specialized compartment, which allows individual particles to be delivered to T cells during trans-infection.  相似文献   

14.
TANK-binding kinase-1 (TBK1) is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella), more extensive bacterial proliferation was observed in tbk1(-/-) than tbk1(+/+) cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-)cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.  相似文献   

15.
CD4 T cell activation during peripheral infections not only is essential in inducing protective CD8 T cell memory but also promotes CD8 T cell function and survival. However, the contributions of CD4 T cell help to antiviral CD8 T cell immunity during central nervous system (CNS) infection are not well established. Encephalitis induced by the sublethal coronavirus JHMV was used to identify when CD4 T cells regulate CD8 T cell responses following CNS infection. Peripheral expansion of virus-specific CD8 T cells was impaired when CD4 T cells were ablated prior to infection but not at 4 days postinfection. Delayed CD4 T cell depletion abrogated CD4 T cell recruitment to the CNS but only slightly diminished CD8 T cell recruitment. Nevertheless, the absence of CNS CD4 T cells was associated with reduced gamma interferon (IFN-γ) and granzyme B expression by infiltrating CD8 T cells, increased CD8 T cell apoptosis, and impaired control of infectious virus. CD4 T cell depletion subsequent to CD4 T cell CNS migration restored CD8 T cell activity and virus control. Analysis of γc-dependent cytokine expression indicated interleukin-21 (IL-21) as a primary candidate optimizing CD8 T cell activity within the CNS. These results demonstrate that CD4 T cells play critical roles in both enhancing peripheral activation of CD8 T cells and prolonging their antiviral function within the CNS. The data highlight the necessity for temporally and spatially distinct CD4 T cell helper functions in sustaining CD8 T cell activity during CNS infection.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) transmission by the parenteral route is similar to mucosal transmission in the predominance of virus using the CCR5 coreceptor (R5 virus), but it is unclear whether blood dendritic cells (DCs), monocytes, or T cells are the cells initially infected. We used ex vivo HIV-1 infection of sorted blood mononuclear cells to model the in vivo infection of blood leukocytes. Using quantitative real-time PCR to detect full-length HIV-1 DNA, both sorted CD11c+ myeloid and CD11c plasmacytoid DCs were more frequently infected than other blood mononuclear cells, including CD16+ or CD14+ monocytes or resting CD4+ T cells. There was a strong correlation between CCR5 coreceptor use and preferential DC infection across a range of HIV-1 isolates. After infection of unsorted blood mononuclear cells, HIV-1 was initially detected in the CD11c+ DCs and later in other leukocytes, including clustering DCs and activated T cells. DC infection with R5 virus was productive, as shown by efficient transmission to CD4+ T cells in coculture. Blood DCs infected with HIV-1 in vitro and cultured alone expressed only low levels of multiply spliced HIV-1 RNA unless cocultured with CD4+ T cells. Early selective infection of immature blood DCs by R5 virus and upregulation of viral expression during DC-T-cell interaction and transmission provide a potential pathway for R5 selection following parenteral transmission.  相似文献   

17.
Dendritic cells (DC) are bone marrow-derived leukocytes that act as powerful stimulators of primary and secondary immune responses. Langerhans cells (LC), which are immature DC in epidermis and genital mucosa, are generally believed to be the initial cells infected with HIV following mucosal exposure to virus. Interestingly, freshly isolated LC express the HIV coreceptor CCR5, but not CXCR4, on their cell surfaces. This expression pattern would theoretically allow only macrophage-tropic [and not T cell (TC)-tropic] HIV to be transmitted across intact mucosal epithelium. In vitro, it is known that HIV infects LC (and other DC) in a CD4- and HIV coreceptor-dependent manner. In addition, HIV can be captured by prominent stellate processes on the surface of LC/DC. HIV-infected DC, as well as DC that have captured HIV, efficiently transmit virus to TC during antigen-specific TC activation. Thus, DC may be involved in HIV plasma viremia increases observed following antigenic exposure, e.g. immunizations, in chronically HIV-infected individuals by (1) activating latently infected TC or (2) activating and transmitting virus to new target TC. In summary, DC most likely play a major role in primary HIV infection by allowing virus to breach mucosal surfaces, and can act during both initial and chronic phases of HIV disease by facilitating infection and depletion of TC.  相似文献   

18.
α-Galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+) T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+) T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+) T cells, as a consequence of reduced inflammation.  相似文献   

19.
In vivo, several mechanisms have been postulated to protect HIV-1-infected cells from NK surveillance. In vitro, previous research indicates HIV-1-infected autologous CD4(+) primary T cells are resistant to NK lysis. We hypothesized that NK lysis of HIV-1-infected target cells would be augmented by the presence of accessory cells and/or accessory cell factors. In this study, we show that stimulation of plasmacytoid dendritic cells (PDC) with the TLR9 agonist, CpG ODN 2216, triggered NK lysis of HIV-1-infected autologous CD4(+) primary T cells. PDC-stimulated NK lysis was dependent upon MHC class I (MHC-I) down-regulation on infected cells, and primary HIV-1 isolates that exhibited enhanced MHC-I down-regulation were more susceptible to NK-mediated lysis. PDC-stimulated NK lysis of HIV-1-infected autologous CD4(+) primary T cells was blocked by neutralizing Abs to type 1 IFN and was perforin/granzyme dependent. Overall, our data suggest that HIV-infected cells are not innately resistant to NK lysis, and that exogenous NK stimulation derived from PDC can trigger NK cytotoxicity against HIV-1-infected autologous CD4(+) primary T cells.  相似文献   

20.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号