首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current view of cytoplasmic RNA-mediated innate immune signaling involves the differential activation of the RNA helicases retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology-2 (LGP2) by distinct RNA viruses. RIG-I, MDA5 and LGP2 form the RIG-I like receptor family (RLR). Since the initial characterization of the RLRs rapid progress has been made in the understanding of the molecular mechanisms that upon virus infection lead to the activation of downstream signaling cascades and the subsequent induction of type I interferon (IFN) and proinflammatory cytokines by these receptors. However, antiviral responses must be tightly regulated in order to prevent uncontrolled production of type I IFN that might have deleterious effects on the host. Exploring the structural and molecular mechanisms that underlie RLR signaling thus was accompanied by the discovery of how RLR-dependent antiviral responses are modulated. This article summarizes the current understanding of endogenous regulation in RLR signaling by various intrinsic molecules that exert their regulatory function in both the steady state or upon viral infection by targeting multiple steps of the signaling cascade.  相似文献   

2.
3.
Triggering and propagating an intracellular innate immune response is essential for control of viral infections. RNase L is a host endoribonuclease and a pivotal component of innate immunity that cleaves viral and cellular RNA within single-stranded loops releasing small structured RNAs with 5′-hydroxyl (5′-OH) and 3′-monophosphoryl (3′-p) groups. In 2007, we reported that RNase L cleaves self RNA to produce small RNAs that function as pathogen-associated molecular patterns (PAMPs). However, the precise sequence and structure of PAMP RNAs produced by RNase L is unknown. Here we used hepatitis C virus RNA as substrate to characterize RNase L mediated cleavage products [named suppressor of virus RNA (svRNA)] for their ability to activate RIG-I like receptors (RLR). The NS5B region of HCV RNA was cleaved by RNase L to release an svRNA that bound to RIG-I, displacing its repressor domain and stimulating its ATPase activity while signaling to the IFN-β gene in intact cells. All three of these RIG-I functions were dependent on the presence in svRNA of the 3′-p. Furthermore, svRNA suppressed HCV replication in vitro through a mechanism involving IFN production and triggered a RIG-I-dependent hepatic innate immune response in mice. RNase L and OAS (required for its activation) were both expressed in hepatocytes from HCV-infected patients, raising the possibility that the OAS/RNase L pathway might suppress HCV replication in vivo. It is proposed that RNase L mediated cleavage of HCV RNA generates svRNA that activates RIG-I, thus propagating innate immune signaling to the IFN-β gene.  相似文献   

4.
Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors (RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns (PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.  相似文献   

5.
RIG-I is a cytosolic receptor for non-self RNA that mediates immune responses against viral infections through IFNα/β production. In an attempt to identify novel tools that modulate IFNα/β production, we used SELEX technology to screen RNA aptamers that specifically target RIG-I protein. Most of the selected RIG-I aptamers contained polyU motifs in the second half regions that played critical roles in the activation of RIG-I-mediated IFNβ production. Unlike other known ligands, RIG-I aptamer bound and activated RIG-I in a 5'-triphosphate-independent manner. The helicase and RD domain of RIG-I were used for aptamer binding, but intact RIG-I protein was required to exert aptamer-mediated signaling activation. Furthermore, replication of NDV, VSV and influenza virus in infected host cells was efficiently blocked by pre- or post-treatment with RIG-I aptamer. Based on these data, we propose that RIG-I aptamer has strong potential to be an antiviral agent that specifically boosts the RIG-I-dependent signaling cascade.  相似文献   

6.
Komuro A  Bamming D  Horvath CM 《Cytokine》2008,43(3):350-358
The recent, rapid progress in our understanding of cytoplasmic RNA-mediated antiviral innate immune signaling was initiated by the discovery of retinoic acid-inducible gene I (RIG-I) as a sensor of viral RNA. It is now widely recognized that RIG-I and related RNA helicases, melanoma differentiation-associated gene-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), can initiate and/or regulate RNA and virus-mediated type I IFN production and antiviral responses. As with other cytokine systems, production of type I IFN is a transient process, and can be hazardous to the host if unregulated, resulting in chronic cellular toxicity or inflammatory and autoimmune diseases. In addition, the RIG-I-like receptor (RLR) system is a fundamental target for virus-encoded immune suppression, with many indirect and direct examples of interference described. In this article, we review the current understanding of endogenous negative regulation in RLR signaling and explore direct inhibition of RLR signaling by viruses as a host immune evasion strategy.  相似文献   

7.
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.  相似文献   

8.
RIG-I is a DExD/H-box RNA helicase and functions as a critical cytoplasmic sensor for RNA viruses to initiate antiviral interferon (IFN) responses. Here we demonstrate that another DExD/H-box RNA helicase DHX36 is a key molecule for RIG-I signaling by regulating double-stranded RNA (dsRNA)-dependent protein kinase (PKR) activation, which has been shown to be essential for the formation of antiviral stress granule (avSG). We found that DHX36 and PKR form a complex in a dsRNA-dependent manner. By forming this complex, DHX36 facilitates dsRNA binding and phosphorylation of PKR through its ATPase/helicase activity. Using DHX36 KO-inducible MEF cells, we demonstrated that DHX36 deficient cells showed defect in IFN production and higher susceptibility in RNA virus infection, indicating the physiological importance of this complex in host defense. In summary, we identify a novel function of DHX36 as a critical regulator of PKR-dependent avSG to facilitate viral RNA recognition by RIG-I-like receptor (RLR).  相似文献   

9.
10.
RLR[retinoic acid-inducible gene Ⅰ(RIG-Ⅰ)-like Receptors]是一类表达在胞浆中的模式识别受体, 在识别细胞质中经病毒复制产生的病毒RNA后, 启动一系列信号级联反应, 以诱导机体Ⅰ型干扰素及干扰素诱导的抗病毒基因的表达, 最后达到清除机体病毒感染的目的。由于在病毒感染时机体干扰素反应必须迅速启动, 当病毒清除后干扰素反应又需要立即恢复到正常本底水平, 因此RLR激活的信号转导途径受到了严格的调控, 其中就包括由E3泛素连接酶参与的泛素化修饰调控和由去泛素化酶参与的去泛素化修饰调控。自2003年成功鉴定出鱼类干扰素基因以来, 鱼类也被发现具有保守的RLR信号转导途径诱导干扰素抗病毒免疫反应, 该信号途径同样受到泛素化修饰的调控。文章总结了近年来泛素化修饰在哺乳类和鱼类RLR介导的抗病毒免疫应答通路中的调节机制。  相似文献   

11.
12.
The rapid induction of type I interferon (IFN) is essential for establishing innate antiviral responses. During infection, cytoplasmic viral RNA is sensed by two DExD/H box RNA helicases, RIG-I and MDA5, ultimately driving IFN production. Here, we demonstrate that purified genomic RNA from HIV-1 induces a RIG-I-dependent type I IFN response. Both the dimeric and monomeric forms of HIV-1 were sensed by RIG-I, but not MDA5, with monomeric RNA, usually found in defective HIV-1 particles, acting as a better inducer of IFN than dimeric RNA. However, despite the presence of HIV-1 RNA in the de novo infection of monocyte-derived macrophages, HIV-1 replication did not lead to a substantial induction of IFN signaling. We demonstrate the existence of an evasion mechanism based on the inhibition of the RIG-I sensor through the action of the HIV-1 protease (PR). Indeed, the ectopic expression of PR resulted in the inhibition of IFN regulatory factor 3 (IRF-3) phosphorylation and decreased expression of IFN and interferon-stimulated genes. A downregulation of cytoplasmic RIG-I levels occurred in cells undergoing a single-cycle infection with wild-type provirus BH10 but not in cells transfected with a protease-deficient provirus, BH10-PR(-). Cellular fractionation and confocal microscopy studies revealed that RIG-I translocated from the cytosol to an insoluble fraction during the de novo HIV-1 infection of monocyte-derived macrophages, in the presence of PR. The loss of cytoplasmic RIG-I was prevented by the lysosomal inhibitor E64, suggesting that PR targets RIG-I to the lysosomes. This study reveals a novel PR-dependent mechanism employed by HIV-1 to counteract the early IFN response to viral RNA in infected cells.  相似文献   

13.
14.
15.
16.
The retinoic-acid-inducible gene (RIG)-like receptor (RLR) family proteins are major pathogen reorganization receptors (PRR) responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC). RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5′-triphosphate RNA (3p-RNA) induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell surviral, whereas higher level of RIG-I activation leads to apopotosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.  相似文献   

17.
RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes   总被引:1,自引:0,他引:1  
Virus-induced signaling adaptor (VISA), which mediates the production of type I interferon, is crucial for the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes double-stranded viral RNA and interacts with VISA to mediate antiviral innate immunity. However, the mechanisms underlying RIG/VISA-mediated antiviral regulation remain unclear. In this study, we confirmed that receptor for activated C kinase 1 (RACK1) interacts with VISA and attenuates the RIG/VISA-mediated antiviral innate immune signaling pathway. Overexpression of RACK1 inhibited the interferon-β (IFN-β) promoter; interferon-stimulated response element (ISRE); nuclear factor kappa B (NF-κB) activation; and dimerization of interferon regulatory factor 3 (IRF3) mediated by RIG-I, VISA, and TANK-binding kinase 1 (TBK1). A reduction in RACK1 expression level upon small interfering RNA knockdown increased RIG/VISA-mediated antiviral transduction. Additionally, RACK1 disrupted formation of the VISA-tumor necrosis factor receptor-associated factor 2 (TRAF2), VISA-TRAF3, and VISA-TRAF6 complexes during RIG-I/VISA-mediated signal transduction. Additionally, RACK1 enhanced K48-linked ubiquitination of VISA, attenuated its K63-linked ubiquitination, and decreased VISA-mediated antiviral signal transduction. Together, these results indicate that RACK1 interacts with VISA to repress downstream signaling and downregulates virus-induced IFN-β production in the RIG-I/VISA signaling pathway.  相似文献   

18.
The cellular RIG-I-like receptor (RLR) senses pathogenic RNA molecular patterns and transmits signals for type I interferon (IFN) production. It acts as a center for antiviral responses, and large numbers of RIG-I (retinoic acid inducible gene-I) interacting proteins are identified as signaling regulators. In the present study, we report PRKRIR, a negative regulator of PKR inhibitor, as a novel RIG-I interacting protein. In HEK293FT cells, PRKRIR synergistically enhances type I IFN production mediated by a signal activated- or constitutively active form of RIG-I. The C-terminal domain of the PRKRIR was required for physical interaction and the signal augmentation. The PRKRIR blocks poly-ubiquitination and protein degradation of RIG-I, thereby increasing cellular levels of RIG-I proteins. Furthermore, overexpression of PRKRIR, along with a signal activated- or constitutively active form of RIG-I, efficiently inhibits virus replication in the infected host. In conclusion, PRKRIR provides a novel positive regulator controlling the RIG-I-IFN production system through protein stability control.  相似文献   

19.
Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) function as cytoplasmic sensors for viral RNA to initiate antiviral responses including type I interferon (IFN) production. It has been unclear how RIG-I encounters and senses viral RNA. To address this issue, we examined intracellular localization of RIG-I in response to viral infection using newly generated anti-RIG-I antibody. Immunohistochemical analysis revealed that RLRs localized in virus-induced granules containing stress granule (SG) markers together with viral RNA and antiviral proteins. Because of similarity in morphology and components, we termed these aggregates antiviral stress granules (avSGs). Influenza A virus (IAV) deficient in non-structural protein 1 (NS1) efficiently generated avSGs as well as IFN, however IAV encoding NS1 produced little. Inhibition of avSGs formation by removal of either the SG component or double-stranded RNA (dsRNA)-dependent protein kinase (PKR) resulted in diminished IFN production and concomitant enhancement of viral replication. Furthermore, we observed that transfection of dsRNA resulted in IFN production in an avSGs-dependent manner. These results strongly suggest that the avSG is the locus for non-self RNA sensing and the orchestration of multiple proteins is critical in the triggering of antiviral responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号