首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new bittersweet species, Celastrus obovatifolius X. Y. Mu & Z. X. Zhang (Celastraceae) is described from China. It is morphologically most similar to C. orbiculatus Thunb., but differs in having lamellate pith, obovate leaves, flower stalk with an articulation in its upper half, and terminal and axillary inflorescences. This is the first study using scanning electron microscope (SEM) to study the seed micromorphology of Celastrus L., which can provide valuable characters for species identification in the genus.  相似文献   

2.
Two new pentacyclic triterpenoids, xyloketal (1), a 3,25-epoxy-olean-12-ene, and 3β,21α-dihydroxyglut-5-ene (2) along with seven known triterpene compounds (39) were isolated from the root barks of Cassine xylocarpa and Celastrus vulcanicola. Their structures were characterized by spectroscopic methods, mainly NMR (1H, 13C, HSQC, HMBC and ROESY) and EIMS, and comparison with data reported in the literature. Also molecular mechanic calculations were used to calculate the minimum energy conformer of compound 1 and its epimer.  相似文献   

3.
南蛇藤原生质体培养及植株再生   总被引:1,自引:0,他引:1  
以4℃低温暗处理24 h的南蛇藤胚性愈伤组织为分离原生质体的原材料,用MS培养基进行液体浅层静置、固液双层以及琼脂糖包埋培养原生质体,获得再生愈伤组织并分化成苗,建立了原生质体培养体系。结果表明,低温暗处理利于高产率高质量原生质体的获得;0.5%纤维素酶+0.5%果胶酶+5 mmol.L-1MES为酶的最佳配方;12 h为最佳酶解时间;13%为甘露醇最佳浓度;静置12 h+振荡0.5 h为最佳酶解方式;液体浅层静置培养取得了较好的原生质体培养效果;MS+6-BA2.0 mg.L-1+IBA 0.1 mg.L-1为愈伤组织最佳分化培养基;1/2MS+NAA0.1 mg.L-1为最佳生根培养基。  相似文献   

4.
5.
美洲南蛇藤的组织培养与快速繁殖   总被引:2,自引:0,他引:2  
1 植物名称美洲南蛇藤(Celastrus scandens L.). 2 材料类别幼嫩的顶芽或带腋芽的茎段. 3 培养条件(1)芽诱导培养基:1/3MS+6-BA 1.0mg·L-1(单位下同)+IBA 0.02+3%蔗糖;(2)增殖培养基:MS+6-BA 1.0+IBA 0.2+3%蔗糖;(3)壮苗培养基:MS+6-BA 0.1+IBA 0.02+3%蔗糖;(4)生根培养基:1/2MS+NAA 0.5+1.5%蔗糖.  相似文献   

6.
7.
As climate variability increases in low-resource environments, the ability of native and invasive species to tolerate stress and respond to large, ephemeral resource pulses will strongly influence plant fitness and, consequently, competitive outcomes. We examined how native and invasive species occurring in arid coastal sage scrub communities in southern California responded to water and high-light stress. We also examined how plants responded to irrigation following short-term water stress. While species responded differently to water and light treatments, no general pattern emerged between native and invasive species. Photosynthetic function of Ricinus communis (invasive) and Salvia mellifera (native) was most robust to water stress and most responsive to irrigation following water stress. Leaf transpiration data suggested that Ricinus and Salvia maintained photosynthetic function by high water use efficiency rather than higher water status via large root biomass. Brassica nigra (invasive) and Encelia californica (native) were more resistant to photoinhibition in response to high-light stress than Ricinus, Salvia, Artemesia californica (native) or Nicotiana glauca (invasive). Our data suggest that native and invasive species in these arid systems display a range of physiological responses to stress and that strategies for invasive species control or native ecosystem restoration based on plant responses to stress may require species-specific approaches.  相似文献   

8.

Background and aims

In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions.

Methods

In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed.

Key results

The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches.

Conclusions

Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize native plant communities.  相似文献   

9.
Transient and steady state responses of leaf gas exchange (photosynthesis (A) and stomatal conductance to water vapor (gs)) to marked changes in photosynthetic photon flux density (PPFD) were studied for two invasive [Cynodon dactylon (L.) Pers. and Sorghum halepense (L.) Pers.] and two non-invasive, native [Bothriochloa ischaemum (L.) Keng and Chrysopogon gryllus (Torn.) Trin.] perennial C4 grass species from semiarid temperate grasslands or croplands. Following an abrupt drop in PPFD from 1300 to 270 μmol photon m?2 s?1, the two invasive species reduced gs to a greater extent than A, resulting in higher intrinsic photosynthetic water use efficiency (PWUE = A/gs) at low, compared to high-light conditions. For non-invasives, a comparable drop in gs and A led to invariant PWUE, which was lower than that for the invasive group under low light. The duration and speed of stomatal closure was similar for the four species. However, unlike the other grasses, the noxious weed S. halepense exhibited a negligible net loss in PWUE during the high-to-low light transition. Responses of the native B. ischaemum were mostly intermediate between those of the two invasive species and the non-invasive C. gryllus, which is in agreement with the species’ ecological intermediacy: non-invasive but often reaches local dominance following a disturbance. With a sudden reverse change in PPFD photosynthetic light induction was not faster for invasives than for non-invasives. These results indicate more efficient water use under variable light for invasive compared to non-invasive perennial C4 grasses which may contribute to their success in semiarid temperate habitats with a heterogeneous light regime. Yet, rapid photosynthetic light induction appears to be of less importance in such environments.  相似文献   

10.
Background: Fire is an important ecological factor in the Cerrado (Brazilian savanna). However, comparative studies on the effect of high temperatures experienced during fires on seed germination of native and invasive grass species are few.

Aims: To assess germination responses to simulated fire temperatures by seeds of invasive and native Cerrado grasses.

Methods: Heat-shock treatments (50 °C, 70 °C, 90 °C, 110 °C, 130 °C or 150 °C) were applied to seeds of 10 species of native and invasive grasses. For each temperature, the seeds were heated in a dry-air flow for 2 or 5 min. This combination of temperatures and exposure times simulated the soil conditions during typical Cerrado fires.

Results: Temperature treatment was significantly related to germination, and the effect varied according to species. Heat shock did not increase germination in either the native or the invasive species. Exposure time was important for only two species, and four species showed a significant increase in mean germination time.

Conclusions: Species showed different tolerances to high temperatures. It was not possible to differentiate the native and invasive grasses only by their tolerance to high temperatures, suggesting that fire alone may not be an efficient management tool to control the invasive species studied here.  相似文献   

11.
Increasing atmospheric CO2 concentration is regarded as an important factor facilitating invasion. However, the mechanisms by which invasive plants spread at the expense of existing native plants are poorly understood. In this study, three invasive species (Mikania micrantha, Wedelia trilobata and Ipomoea cairica) and their indigenous co-occurring species or congeners (Paederia scandens, Wedelia chinensis and Ipomoea pescaprae) in South China were exposed to elevated CO2 concentration (700 μmol mol?1). The invasive species showed an average increase of 67.1% in photosynthetic rate, significantly different from the native species (24.8%). On average the increase of total biomass at elevated CO2 was greater for invasive species (70.3%) than for the natives (30.5%). Elevated CO2 also resulted in significant changes in biomass allocation and morphology of invasive M. micrantha and W. trilobata. These results indicate a substantial variation in response to elevated CO2 between these invasive and native plant species, which might be a potential mechanism partially explaining the success of invasion with ongoing increase in atmospheric CO2.  相似文献   

12.
Nodes, shoot tips, internodes and leaf bases (approximately 1.0 cm) excised from young vines of the flowering woody climber, Celastrus paniculatus WilId. sub. sp. paniculatus (Celastraceae) were cultured in Murashige and Skoog (MS) medium containing agar (0.6%), sucrose (3%) and varied concentrations of 6-benzyl aminopurine (BAP) and kinetin. All the explant types were regenerative and maximum number (3.6) and frequency (94%) of axillary shoot formation of (5.08 cm long) was recorded in the nodes cultured in BAP (1 mg L(-1)) after 6 weeks. Combinations of BAP (1 mg L(-1)) and indole-3-acetic acid/l-naphthalene acetic acid (0.01-1 mg L(-1); IAA/NAA) tested with nodes induced formation of less number (3 and 2.2) of shoots at same frequency (94%). All the explant types viz. node, shoot tip, internode and leaf base of in vitro derived shoots responded earlier and better in lower concentrations of BAP (0.5-2 mg L(-1)) with formation of 8, 3.1, 6.4 and 1.8 shoots respectively during the same period. In spite of the advanced and increased caulogenic responses, differences in cytokinin requirements between different explants observed during culture initiation still persisted with the nodes, shoot tips, internodes and petiole segments responding best at 0.5, 1 and 2 mg L(-1) BAP, respectively. The repeated reculture up to 10 cycles of the nodes from the shoot cultures each at 6-week intervals enabled multiplication and stocking of shoots without decline. Rooting of 3-7 cm shoot cuttings was induced in half-strength MS liquid medium containing IAA (1 mg L(-1)) with formation of 7.25 roots of 2.41 cm length within 6 weeks. Rooted plants were established at 84-96% rate in community pots without hardening, the least value (84%) being obtained with NAA- induced thick and calloid rooted plants. Four month old community potted plants were reintroduced into native forest habitats at 95% efficiency and 8 months after restoration, the plants were uniform in morphological, growth, cytological and peroxidase and esterase isozyme characteristics.  相似文献   

13.
Studying germination in the native and non‐native range of a species can provide unique insights into processes of range expansion and adaptation; however, traits related to germination have rarely been compared between native and non‐native populations. In a series of common garden experiments, we explored whether differences in the seasonality of precipitation, specifically, summer drought vs summer rain, and the amount and variation of annual and seasonal precipitation affect the germination responses of populations of an annual ruderal plant, Centaurea solstitialis, from its native range and from two non‐native regions with different climates. We found that seeds from all native populations, irrespective of the precipitation seasonality of the region in which they occurred, and non‐native populations from regions with dry summers displayed similarly high germination proportions and rates. In contrast, genotypes from the non‐native region with predominantly summer rain exhibited much lower germination fractions and rates. Also, percent germination was strongly correlated with variation in precipitation in winter, the season that follows germination for C. solstitialis. Specifically, germination was lower for native and non‐native populations experiencing greater variation in winter precipitation. This correlation, however, was greatly influenced by the non‐native region with summer rain, which also exhibited the greatest variation in winter precipitation among studied regions. These results suggest that rather than general climatic patterns, the degree of risk experienced at early developmental stages could exert an important control over the germination strategy of C. solstitialis populations in both native and non‐native ranges. Also, these findings reveal a largely unique germination response in C. solstitialis genotypes growing in the non‐native region with summer rain and high variation in winter precipitation. Our work raises the possibility that rapid adaptive changes in germination strategies may contribute to the success of globally distributed invaders.  相似文献   

14.
Cavraro  Francesco  Facca  Chiara  Naseer  Muhammad  Malavasi  Stefano 《Hydrobiologia》2022,849(3):661-674
Hydrobiologia - Salinity changes in transitional water ecosystems are a natural feature, but anthropogenic direct or indirect impacts are drastically altering their equilibrium and, therefore,...  相似文献   

15.
Animal introductions can often have unexpected and complex consequences for both native and invader species. Freshwater crustaceans such as Gammarus spp. (amphipods) and Mysis relicta (an ‘opossum shrimp’) have frequently come into contact because of deliberate and accidental introductions. However, there remains poor understanding of mechanisms leading to the co-existence and/or exclusion among amphipods and mysids. Here, we examined predatory and interference interactions between native (Gammarus duebeni celticus) and invasive (Gammarus tigrinus and Crangonyx pseudogracilis) amphipods and the native M. relicta in Britain’s largest expanse of freshwater, Lough Neagh. Laboratory mesocosm experiments simulating near-shore/mid-lough benthic habitats showed that both Gammarus species, but not C. pseudogracilis, preyed on M. relicta, which itself preyed on C. pseudogracilis. Further, M. relicta micro-distribution and habitat use changed because of interference from G. d. celticus and to a lesser extent G. tigrinus, with C. pseudogracilis having no such impact. In smaller microcosms, predation of M. relicta adults and juveniles by Gammarus spp. was significant. Although predation of Gammarus spp. by M. relicta was low, adult C. pseudogracilis were killed by M. relicta and its predation of juvenile C. pseudogracilis was high. We discuss the concurrence of these laboratory interactions with known field patterns of co-existence amongst these species.  相似文献   

16.
In Amazonian floodplains, plant survival is determined by adaptations and growth strategies to effectively capture sunlight and endure extended periods of waterlogging. By measuring gas exchange, quantum efficiency of photosystem 2 (PSII), and growth parameters, we investigated the combined effects of flooding gradients and light on two common evergreen floodplain tree species, the light-tolerant Cecropia latiloba and the shade-tolerant Pouteria glomerata. Individual plants were subjected to different combinations of light and flooding intensity in short-term and long-term experiments. Plants of C. latiloba lost all their leaves under total submersion treatments (plants flooded to apex and with reduced irradiance) and showed highest maximum assimilation rates (Amax) in not flooded, high light treatments (6.1 μmol CO2 m−2 s−1). Individuals of P. glomerata showed similar patterns, with Amax increasing from 1.9 μmol CO2 m−2 s−1 under total flooding to 7.1 μmol CO2 m−2 s−1 in not flooded, high light treatments. During the long-term flooding experiment, quantum efficiency of PSII (Fv/Fm) of C. latiloba was not affected by partial flooding. In contrast, in P. glomerata Fv/Fm decreased to values below 0.73 after 120 days of total flooding. Moreover, total submergence led P. glomerata to reduce significantly light saturation point (LSP), as compared to C. latiloba. For both species morphological adjustments to long-term flooding, such as the production of adventitious roots, resulted in reduced total biomass, relative growth rate (RGR) and leaf mass ratio (LMR). Growth increase in C. latiloba seemed to be more limited by low-light than by flooding. Therefore, the predominant occurrence of this species is in open areas with high light intensities and high levels of inundation. In P. glomerata flooding induced high reductions of growth and photosynthesis, whereas light was not limiting. This species is more abundant in positions where irradiance is reduced and periods of submergence are slightly modest. We could show that the physiological requirements are directly responsible for the flooding (C. latiloba) and shade (P. glomerata) tolerance of the two species, which explains their local distribution in Amazonian floodplain forests.  相似文献   

17.
Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100 000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals. The interglacial Adriatic ecosystems appear to have been impervious to natural climate change either owing to their persistence during those long-term perturbations or their resilient recovery during interglacial phases of climate oscillations. By contrast, present-day communities of the northern Adriatic differ notably from their Holocene counterparts. The recent ecosystem shift stands in contrast to the long-term endurance of interglacial communities in face of climate-driven environmental changes.  相似文献   

18.
We investigated temporal changes in hybridization and introgression between native red deer (Cervus elaphus) and invasive Japanese sika (Cervus nippon) on the Kintyre Peninsula, Scotland, over 15 years, through analysis of 1513 samples of deer at 20 microsatellite loci and a mtDNA marker. We found no evidence that either the proportion of recent hybrids, or the levels of introgression had changed over the study period. Nevertheless, in one population where the two species have been in contact since ~1970, 44% of individuals sampled during the study were hybrids. This suggests that hybridization between these species can proceed fairly rapidly. By analysing the number of alleles that have introgressed from polymorphic red deer into the genetically homogenous sika population, we reconstructed the haplotypes of red deer alleles introduced by backcrossing. Five separate hybridization events could account for all the recently hybridized sika‐like individuals found across a large section of the Peninsula. Although we demonstrate that low rates of F1 hybridization can lead to substantial introgression, the progress of hybridization and introgression appears to be unpredictable over the short timescales.  相似文献   

19.
Non-indigenous species (NIS) are well-recognized as threats to biodiversity worldwide. Yet the interaction between NIS and disease emergence in native habitats remains poorly understood. Bithynia tentaculata is an invasive aquatic snail which is now found in the Upper Mississippi River (UMR). A key concern with this snail is that it harbors trematode parasites (such as Sphaeridiotrema spp.) that have been associated with waterfowl mortality in the region. In this study, we used a combination of field collections and laboratory experiments to better understand the roles that infection competency and host life-history responses play in disease transmission in the UMR. Results from the field and laboratory showed that B. tentaculata infected with Sphaeridiotrema spp. grew to a larger size than uninfected individuals. Although infection was not observed in a number of native species, results from this study suggest that they may still suffer exposure costs (such as reduced growth). Moreover, variability in infection competency between NIS and native snails may dilute or amplify host infection risk. This study reinforces the importance of considering both host life-history responses and competency in systems involving NIS, and provides insight into the factors potentially modulating waterfowl disease in the UMR.  相似文献   

20.
Grazing not only modifies the structure and functioning of grasslands, it also changes micro-environmental conditions that alter the availability of resources. The aim of this study was to analyze the response of grasses with different photosynthetic pathways (C3/C4), growth forms (prostrate/erect), and grazing responses (increaser/decreaser) to defoliation and resource availability. In a greenhouse, we performed a factorial experiment with three factors: defoliation, light, and water and three species: Axonopus affinis (C4 prostrate, increaser), Coelorachis selloana (C4 erect, decreaser), and Bromus auleticus (C3 erect, decreaser). We measured the relative growth rate (RGR), biomass assignment, and specific leaf area. The RGR of both C4 species was affected by light availability, while the decreaser C3 did not respond to any factor. Biomass allocation to leaves and stolons changed with the interaction between light and water in the C4 prostrate species (increaser). In the C4 erect grass (decreaser), biomass allocation was more affected by defoliation under low levels of light and water. Low light availability and defoliation reduced the assignment to leaves, while the allocation to rhizomes increased. Species-specific responses to resources availability that are modified by grazing were related to photosynthetic pathway, growth form, and grazing responses. Biomass allocation was related to strategies to avoid and/or tolerate grazing. The investment to leaves was limited by light and water availability in prostrate species, while in erect grasses it was controlled by defoliation and water availability. Our results highlight the importance of species responses to changes in resource availability associated to grazing regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号