首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lecithin monolayer liposomes (1000 A in diameter) loaded with cytochrome c were placed into the external solution, in which O2 superoxide radicals were regenerated by the xanthine-xanthine oxidase system. The penetration of superoxide radicals across the liposomal membranes was followed by cytochrome c reduction in the interval volume of the liposomes. The effects of lipid membrane modifiers and temperature on this process were investigated. The results obtained were used for calculation of the permeability coefficients of bilayer lipid membranes for O(2) (P'O(2) = (7.6 +/- 0.3) . 10(-8) cm . s-1) or HO . 2(P'HO(2) = 4.9 x 10(-4) cm . s-1). The effect of the transmembrane electric potential (concentration gradient of H+, valinomycin) on the permeability of liposomal membranes for the superoxide radical was studied. The superoxide radical was down to penetrate across the bilayer lipid membranes in an unloaded state. Using an intramolecular cholesterol-amphotericin B-complex, the superoxide radicals were shown to penetrate across the bilayer lipid membranes, predominantly via the anionic channels.  相似文献   

2.
3.
Oxygen radicals and reactive oxygen species in reproduction   总被引:10,自引:0,他引:10  
Free radicals and reactive oxygen species play a number of significant and diverse roles in reproductive biology. In common with other biological systems, mechanisms have evolved to minimize the damaging effects that these highly reactive molecules can have on reproductive integrity. Conversely, however, recent findings illustrate the constructive roles that oxygen radicals and reactive oxygen species play in a number of important junctures in the development of germ cells and the obligate endocrine support they receive for the successful propagation of the species. Specifically addressed in this review are some aspects of sperm development and action, the uterine environment, oocyte maturation and ovulation, and corpus luteum function and regression.  相似文献   

4.
We have investigated a series of linear and angular furocoumarins, capable of forming either the monofunctional adducts (single strand) or bifunctional adducts (interstrand cross-links) with DNA with a view to examine the relationship of their skin photosensitizing potency, their ability to produce singlet oxygen (1O2) or superoxide radicals (O-.2 or HO.2), and their carcinogenic activity. The significance of photochemical interactions of psoralens and DNA is well known in skin photosensitization and skin carcinogenesis. Our data suggest that both monofunctional and bifunctional psoralens produce 1O2 and O-.2, and these reactive forms of oxygen may contribute to the development of skin cancer and membrane-damaging effects of these furocoumarins.  相似文献   

5.
6.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

7.
8.
9.
10.
An important index of neutrophil function is the production of superoxide radicals (O2-) upon activation. Thus a development of a new adequate assay of O2- generation measurement is of great interest for phagocyte researchers. The present article considers the quantitative determination of O2- generation based on the interaction of O2- with 1-oxy-2,2,6,6-tetramethyl-4-oxypiperidine producing 4-oxo-2,2,6,6-piperidine-1-oxyl, detected by ESR. The kinetic curve of nitroxyl radical (NR) formation has a linear character. The NR formation rate after a short induction period (appr. 2 min.) approaches 3.3 X 10(-3) M/s, where cell concentration was 4 X 10(5) per ml. Hydroxylamine (3.8 mM) auto-oxidation rate is negligible as compared with activated neutrophils and is equal to 2 X 10(-9) M/s. Sensitivity NR to the presence of superoxide dismutase (SOD) came as evidence that NR formation is due O2- radicals. SOD (10(-7) M) inhibits NR formation by 90%. Hydroxylamine oxidation by O2- is an irreversible reaction--20-min incubation of activated neutrophils with NR do not influence NR concentration. The NR generation rate dependence upon the neutrophil concentration is linear in the cell concentration range from 4 X 10(5 up to 6 X 10(6) per ml. In this range a quantitative measurement of O2- production is suitable. The sensitivity of hydroxylamine assay is close to the sensitivity of chemiluminescent method, but specificity is higher, as SOD inhibits chemiluminescence only by 50%.  相似文献   

11.
12.
13.
Protein damage and degradation by oxygen radicals. I. general aspects   总被引:21,自引:0,他引:21  
Aggregation, fragmentation, amino acid modification, and proteolytic susceptibility have been studied following exposure of 17 proteins to oxygen radicals. The hydroxyl radical (.OH) produced covalently bound protein aggregates, but few or no fragmentation products. Extensive changes in net electrical charge (both + and -) were observed. Tryptophan was rapidly lost with .OH exposure, and significant production of bityrosine biphenol occurred. When incubated with cell-free extracts of human and rabbit erythrocytes, rabbit reticulocytes, or Escherichia coli, most .OH-modified proteins were proteolytically degraded up to 50 times faster than untreated proteins. The exceptions were alpha-casein and globin, which were rapidly degraded without .OH modification. ATP did not stimulate the degradation of .OH-modified proteins, but alpha-casein was more rapidly degraded. Leupeptin had little effect under any condition, and degradation was maximal at pH 7.8. The data indicate that proteins which have been denatured by .OH can be recognized and degraded rapidly and selectively by intracellular proteolytic systems. In both red blood cells and E. coli, the degradation appears to be conducted by soluble, ATP-independent (nonlysosomal) proteolytic enzymes. In contrast with the above results, superoxide (O2-) did not cause aggregation or fragmentation, tryptophan loss, or bityrosine production. The combination of .OH + O2- (+O2), which may mimic biological exposure to oxygen radicals, induced charge changes, tryptophan loss, and bityrosine production. The pattern of such changes was similar to that seen with .OH alone, although the extent was generally less severe. In contrast with .OH alone, however, .OH + O2- (+O2) caused extensive protein fragmentation and little or no aggregation. More than 98% of the protein fragments had molecular weights greater than 5000 and formed clusters of ionic and hydrophobic bonds which could be dispersed by denaturing agents. The results indicate a general sensitivity of proteins to oxygen radicals. Oxidative modification can involve direct fragmentation or may provide denatured substrates for intracellular proteolysis.  相似文献   

14.
Formation of superoxide radical in isolated rat heart mitochondria under controlled oxygenation has been studied by spin trapping and EPR oxymetry. Lithium phthalocyanine and perdeuterated Tempone-D-15 N 16 were used to determine the oxygen concentration. Tiron was used as a spin trap. By varying the oxygen content in the reaction medium, we have shown that isolated heart mitochondria can produce superoxide even at an oxygen partial pressure of 17.5 mmHg, though at a rate considerably lower than under normal conditions. Raising the oxygen concentration increases the rate of superoxide generation.  相似文献   

15.
A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4–8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below ±5.6% standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. ±15% standard deviation.  相似文献   

16.
The generation of Reactive Oxygen Species (ROS) as by-products in mitochondria Electron Transport Chain (ETC) has long been admitted as the cost of aerobic energy metabolism with oxidative damages as consequence. The purpose of this methodological review is to present some of the most widespread methods of ROS generation and to underline the limitations as well as some problems, identified with some experiments as examples, in the interpretation of such results. There is now no doubt that besides their pejorative role, ROS are involved in a variety of cellular processes for the continuous adaptation of the cell to its environment. Because ROS metabolism is a complex area (low production, instability of species, efficient antioxidant defense system, several places of production…) bias, variances and limitations in ROS measurements must be recognized in order to avoid artefactual conclusions, and especially to improve our understanding of physiological and pathophysiological mechanisms of such phenomenon.  相似文献   

17.
18.
19.
20.
This paper briefly presents a critical review concerning the chemical reactions involved when superoxide or hydrogen peroxide meet iron complexes. The data commented on are required for a correct interpretation of the chemical processes which play a paramount role in the biological activation of dioxygen and arise in normal metabolism as well as in pathological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号