首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liang HG  Lü CS 《Plant physiology》1984,75(3):876-878
The callus of Nicotiana rustica cv Gansu yellow flower and N. tabacum cv willow leaf were cultured on ordinary subculture medium (M-1) and on regeneration medium (M-2), respectively. No differentiation was observed in Gansu yellow flower tobacco callus cultures grown on both M-1 and M-2 medium. The respiration of both cultures was partially resistant to cyanide and markedly inhibited by m-chlorobenzhydroxamic acid. The relative contributions of alternative and cytochrome pathway were 31% and 47% of the total respiration, respectively, in M-1 callus cultures. The relative O2 uptake of the two pathways was not changed significantly in M-2 callus cultures. In subcultured M-1 callus cultures of Willow leaf tobacco, the respiration mediated via alternative pathway was about 29 to 38% of the total respiration, and the cytochrome pathway still was the major respiratory pathway. In M-2 callus cultures in which differentiation occurred, the relative contribution of alternative pathway increased to 41 to 47% of the total respiration, and the cytochrome pathway decreased considerably. These results suggested that the change of respiratory electron transport pathway was probably related to the differentiation of tobacco callus cultures.  相似文献   

2.
Inhibitor titration curves and discrimination against 18O2 by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities.  相似文献   

3.
4.
Zhao MG  Tian QY  Zhang WH 《Plant physiology》2007,144(1):206-217
Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl-induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis.  相似文献   

5.
Chloramphenicol (CAP), an inhibitor of the mitochondrial proteinsynthesis inhibits callus induction and subsequent growth ofpotato tuber tissue discs. Tissue respiration increase did notoccur in the presence of CAP. Both with and without CAP theinitially CN-sensitive tissue becomes totally CN-resistantin 1–2 weeks. CAP blocks the development of mitcohondrial cytochrome oxidase.A gradual decrease in the activities of cytochrome oxidase andof cytochrome pathway-mediated mitochondrial respiration isfound in CAP-tissue. The mitochondrial alternative pathway whichis absent in mitochondria from freshly sliced tissue developsduring incubation both in the absence and presence of CAP. Thealternative pathway is only operative in uninhibited state IIIrespiration in mitochondria from CAP-tissue. Cycloheximide, an inhibitor of the cytoplasmic protein synthesisinhibits the developments of the alternative pathway and ofthe cytochrome pathway. Alcohol dehydrogenase activity increasestenfold in the tissue during two weeks of incubation on mediawith and without CAP. Alcohol production in the tissue did nottake place in the controls nor in the CAP-treated tissue. (Received April 18, 1981; Accepted July 17, 1981)  相似文献   

6.
The respiratory metabolism was studied in three types of sugarbeet (Beta vulgaris L. var. altissima) calli: a normal callus (N) and two fully habituated (auxin- and cytokinin-independent) calli, organogenic (HO) and non-organogenic (HNO). Except for the HO callus at day 14, the oxygen consumption rates of the habituated calli were always higher than that of the normal callus throughout the cycle of culture. The maximum activity of the cyanide-resistant pathway (alternative pathway) was much higher in the two habituated calli than in the normal one. By contrast, important differences were found in HNO and HO calli concerning the activity of the cytochrome pathway. In HNO cells, the high activity of this pathway was correlated with a high ATP level while the inverse situation was observed in HO cells. The physiological significance of these results is discussed.  相似文献   

7.
In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.  相似文献   

8.
Measurements of respiration were made on intact tissue and mitochondria isolated from soybean (Glycine max [L.] Merr. cv `Corsoy') cotyledons from seedlings of different ages grown in light and darkness. Effects of cyanide (KCN) and salicylhydroxamic acid (SHAM) on O2 uptake rates were determined. O2 uptake was faster in light-grown tissue and was inhibited by both KCN and SHAM in all except light-grown tissue older than 9 days. Both inhibitors stimulated O2 uptake in tissues more than 9 days old. Mitochondria in which O2 uptake was coupled to ATP synthesis were isolated from all tissues. O2 uptake by mitochondrial preparations from light- and dark-grown cotyledons was equally sensitive to KCN. Similarly, age did not affect KCN sensitivity, but sensitivity to SHAM declined with age both in the presence and absence of KCN. Estimated capacities of the cytochrome and alternative pathways of the mitochondrial preparations indicated considerably larger cytochrome than alternative pathway capacities. The cytochrome pathway capacities paralleled the state 3 mitochondrial respiration rates, which increased from day 5 to day 7 then declined thereafter. The alternative pathway capacities were not affected by light. The uncoupler, p-trifluoromethoxycarbonylcyanide phenylhydrazone (FCCP), increased the flow of electrons through the cytochrome pathway at the expense of flow through the alternative pathway in isolated mitochondria. However, the combined capacities did not exceed the rate in the presence of FCCP. The results are interpreted to indicate that the stimulation of respiration by KCN and SHAM observed in the 12-day-old green cotyledons and previously observed in older soybean leaves is not explained by characteristics of the mitochondria.  相似文献   

9.
Potter FJ  Wiskich JT  Dry IB 《Planta》2001,212(2):215-221
Plant mitochondria contain an alternative oxidase (AOX) acting as a terminal electron acceptor of the alternative pathway in the electron transport chain. Here we describe the production of inducible antisense Aox1a plants of Arabidopsis thaliana (L.) Heynh. and the procedures used to determine the resulting alternative pathway activity. The Arabidopsis Aox1a cDNA sequence was cloned behind a copper-inducible promoter system in the antisense orientation. Arabidopsis thaliana (Columbia) plants were transformed by in-planta vacuum infiltration with Agrobacterium containing the antisense construct. Whole-leaf ethanol production was used as a measure to investigate alternative pathway activity in the presence of antimycin A. After 24 h, leaves from the copper-induced, antisense line F1.1 produced up to 8.8 times more ethanol (via aerobic fermentation) than the non-induced and wild-type leaves, indicating effective cytochrome pathway inhibition by antimycin A and a decreased alternative pathway activity in induced F1.1 leaves. Transgene expression studies also revealed no expression in non-induced leaves and up until 24 h post-induction. Copper-induced transgenic leaves were less susceptible to alternative pathway inhibition than non-induced transgenic leaves, as seen via tissue-slice respiratory studies, and mitochondrial respiration, using F1.1 cell cultures, also supported this. These results demonstrate the successful production of a transgenic line of Arabidopsis in which the alternative pathway activity can be genetically manipulated with an inducible antisense system. Received: 31 March 2000 / Accepted: 10 May 2000  相似文献   

10.
Nitric oxide (NO) has been indicated in regulating a wide-spectrum of plant developmental events and stress responses. An Arabidopsis gene AtNOA1 encodes a NO-associated protein, which plays a role in salt tolerance. We employed the knockout mutant for AtNOA1, Atnoa1 that is sensitive to salinity, as a tool to evaluate the functions of a rice homologous gene, OsNOA1.OsNOA1 transgenic expression rescued Atnoa1 in seedling development and vegetative growth under normal conditions, enhanced the salt tolerance of Atnoa1 in seed germination, seedling root growth and chlorophyll synthesis, and reduced Na+/K+ ratio in Atnoa1; NO relative content assay implicates that NO synthesis was re-established via OsNOA1 expression in Atnoa1; Northern blot and Semi-Q RT-PCR assays demonstrate that salt tolerance-related gene expression was re-established as well via OsNOA1 expression in Atnoa1.Our data indicate that the re-establishment of NO synthesis and salt tolerance-related gene expression by OsNOA1 expression may account for the restoration of Atnoa1 in terms of developmental and salt tolerance phenotypes. All the above results point to a notion that OsNOA1 may play similar roles as AtNOA1, and NO involvement in salt tolerance may be ascribed to its regulation of salt tolerance-related gene expression.  相似文献   

11.
Under low temperature conditions, the cytochrome pathway of respiration is repressed and reactive oxygen species (ROS) are produced in plants. Mitochondrial alternative oxidase (AOX) is the terminal oxidase responsible for the cyanide-insensitive and salicylhydroxamic acid-sensitive respiration. To study functions of wheat AOX genes under low temperature, we produced transgenic Arabidopsis by introducing Waox1a expressed under control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis thaliana. The enhancement of endogenous AOX1a expression via low temperature stress was delayed in the transgenic Arabidopsis. Recovery of the total respiration activity under low temperature occurred more rapidly in the transgenic plants than in the wild-type plants due to a constitutively increased alternative pathway capacity. Levels of ROS decreased in the transgenic plants under low temperature stress. These results support the hypothesis that AOX alleviates oxidative stress when the cytochrome pathway of respiration is inhibited under abiotic stress conditions.  相似文献   

12.
Ethanol, when added to the incubation medium of callus-forming potato tuber discs, inhibits callus growth and causes an increase of the mitochondrial antimycin-A resistant respiration, expressed as a percentage of state III-respiration. This increase in resistance to antimycin-A is the result of a poor development of the cytochrome pathway in tissue discs treated with ethanol. The development of the antimycin-A resistant alternative oxidase sensitive to chelator is about the same for treated and untreated discs. The respiratory control (RC) ratio of the mitochondrial respiration increases after addition of a chelator, which inhibits the alternative pathway. The RC ratio of the uninhibited mitochondrial respiration appears to be inversely related to the capacity of the alternative pathway, when mitochondrial preparations with different capacities to transfer electrons via the alternative path are compared. From the experimentally observed relation between RC-ratio and alternative oxidase capacity, it was concluded that at least half of the capacity of the alternative path is used in uninhibited state IV respiration.  相似文献   

13.
The addition of potassium bicarbonate to the electrode cuvette immediately stimulated the rate of dark O2 uptake of photomixotrophic and heterotrophic carnation (Dianthus caryophyllus L.) callus, of Elodea canadensis (Michx) leaves, and of other plant tissues. This phenomenon occurred at pH values lower than 7.2 to 7.8, and the stimulation depended on the concentration of gaseous CO2 in the solution. These stimulatory responses lasted several minutes and then decreased, but additional bicarbonate or gaseous CO2 again stimulated respiration, suggesting a reversible effect. Carbonic anhydrase in the solution increased the stimulatory effect of potassium bicarbonate. The CO2/bicarbonate dependent stimulation of respiration did not occur in animal tissues such as rat diaphragm and isolated hepatocytes, and was inhibited by salicylhydroxamic acid in carnation callus cells and E. canadensis leaves. This suggested that the alternative oxidase was engaged during the stimulation in plant tissues. The cytochrome pathway was severely inhibited by CO2/bicarbonate either in the absence or in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone. The activity of cytochrome c oxidase of callus tissue homogenates was also inhibited by CO2/bicarbonate. The results suggested that high carbon dioxide levels (mainly free CO2) partially inhibited the cytochrome pathway (apparently at the oxidase level), and this block in electron transport elicited a large transient engagement of the alternative oxidase when present uninhibited.  相似文献   

14.
15.
The alternative oxidase (AOX) of plant mitochondria is encoded by the nuclear gene Aox1. Sense and antisense DNA constructs of Nicotiana tabacum Aox1 were introduced into tobacco, and transgenic plants with both increased and decreased levels of mitochondrial AOX protein were identified. Suspension cells derived from wild-type and transgenic plants were grown in heterotrophic batch culture. Transgenic cells with increased AOX protein had an increased capacity for cyanide-resistant, salicylhydroxamic acid-sensitive respiration compared to wild-type cells, whereas transgenic cells with decreased AOX protein had a decreased capacity for such respiration. Thus, genetic alteration of the level of AOX protein was sufficient to alter the capacity for electron transport through the alternative pathway. Under our standard growth conditions, "antisense" cells with dramatically reduced levels of AOX protein had growth and respiration rates similar to the wild type. However, whereas wild-type cells were able to grow under conditions that severely suppressed cytochrome pathway activity, antisense cells could not survive this treatment. This suggests that a critical function of AOX may be to support respiration when the cytochrome pathway is impaired. The much higher level of AOX protein in "sense" cells compared to the wild type did not appreciably alter the steady-state partitioning of electrons between the cytochrome path and the alternative pathway in vivo, suggesting that this partitioning may be subject to additional regulatory factors.  相似文献   

16.
Changes in the oxygen uptake of petal slices by the cytochrome and alternative respiratory pathways were monitored during petal development in the arctic herb Saxifraga cernua. As the petals developed, rates of total respiration increased to a maximum rate during petal unfolding (day 4.5), and thereafter declined. Respiration in petals of all ages was at least partially resistant to cyanide, indicating the capacity for the alternative pathway. In all, except day 1 and senescing day 8 petals, respiration was inhibited by salicylhydroxamic acid, indicating engagement of the alternative pathway. In general, temporal changes in the respiratory activity along each pathway were similar and in parallel with changes in total respiration, although maximum rates along each pathway occurred at different times. Maximum cytochrome pathway activity occurred during petal expansion (day 4) whereas the alternative pathway peaked during petal unfolding at day 4.5. The control of respiration was also investigated. In the presence of salicylhydroxamic acid, the addition of the uncoupler carbonyl cyanide m-chlorophenylhydrazone was never stimulatory, suggesting that the cytochrome pathway was not restricted by adenylate levels. The addition of sucrose stimulated respiration only in day 1 petals, suggesting substrate limitation at this developmental stage. Since the rate of alternative pathway respiration peaked during petal unfolding, a time of high energy requirement, we suggest that the alternative pathway may have been used as an inefficient energy source during petal development.  相似文献   

17.
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.  相似文献   

18.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt ? parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   

19.
The effects of KCN (0.5mmol/L) and NaN3 (0.01 mmol/L) pretreatment on the operation of the alternative pathway in subcultured tobacco (Nicotiana rustica L. cv. Gansu yellow flower) callus were analyzed. After treatment with KCN and NaN3 for 12 h, the total respiration rate (Vt) decreased by 12% and 17%, whereas oxygen consuption by the cytochrome pathway decreased by 22% and 28% respectively. The capacity of the alternative pathway (Valt) remained constant, while the activity of the alternative pathway (ρ· Valt ) inreased slightly. This changing pattern led to a declined contribution of the cytochrome pathway to the total respiration rate and an increased activity of the alternative pathway. Treatment with KCN for 24 h brought about a slight rise of oxygen consumption by the cytochrome pathway as compared with that in callus treated for 12 h, but the oxygen consumption was still lower than that in the untreated callus. Treatment with NaN3 for 24 h resulted in a profound decrease of the cytochrome pathway operation and a continuing increase of the alternative pathway operation. These data indicated that the enhanced operation of the alternative pathway played a compensatory role to the total respiration when the cytochrome pathway was partially inhibited in tobacco callus.  相似文献   

20.
Mass spectrometric analysis of gas exchange in light and dark by N-limited cells of Chlamydomonas reinhardtii indicated that ammonium assimilation was accompanied by an increase in respiratory carbon flow to provide carbon skeletons for amino acid synthesis. Tricarboxylic acid (TCA) cycle carbon flow was maintained by the oxidation of TCA cycle reductant via the mitochondrial electron transport chain. In wild-type cells, inhibitor studies and 18O2 discrimination experiments indicated that respiratory electron flow was mediated entirely via the cytochrome pathway in both the light and dark, despite a large capacity for the alternative pathway. In a cytochrome oxidase deficient mutant, or in wild-type cells in the presence of cyanide, the alternative pathway could support the increase in TCA cycle carbon flow. These different mechanisms of oxidation of TCA cycle reductant were reflected by the much greater SHAM sensitivity of ammonium assimilation by cytochrome oxidase-deficient cells as compared to wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号