首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. P. purpurogenum produced one of the highest levels of EG (5.6 U mg-protein?1) with rice straw and corn steep powder as carbon and nitrogen sources, respectively. The extracellular EG was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The purified EG was a monomeric protein with a molecular weight of 37 kDa and showed broad substrate specificity with maximum activity towards lichenan. P. purpurogenum EG showed t1/2 value of 2 h at 70 °C and catalytic efficiency of 118 ml mg?1 s?1, one of the highest levels seen for EG-producing microorganisms. Although EGs have been reported elsewhere, the high catalytic efficiency and thermostability distinguish P. purpurogenum EG.  相似文献   

2.
1,3-β-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal β-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 °C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules.  相似文献   

3.
A novel xyloglucan-specific endo-β-1,4-glucanase gene (xeg5A) was isolated, cloned, and expressed in Esherichia coli. The enzyme XEG5A consisted of a C-terminal catalytic domain and N-terminal sequence of ~90 amino acid residues with unknown function. The catalytic domain assumed an (α/β)8-fold typical of glycoside hydrolase (GH) family 5, with the two catalytic residues Glu240 and Glu362 located on opposite sides of the surface groove of the molecule. The recombinant enzyme showed high specificity towards tamarind xyloglucan and decreasing activity towards xyloglucan oligosaccharide (HDP-XGO), carboxymethyl cellulose, and lichenan. Tamarind xyloglucan was hydrolyzed to three major fragments, XXXG, XXLG/XLXG, and XLLG. The hydrolysis followed the Michaelis–Menten kinetics, yielding K m and V max of 3.61 ± 0.23 mg/ml and 0.30 ± 0.01 mg/ml/min, respectively. However, the hydrolysis of HDP-XGO showed a decrease in the rate at high concentrations suggesting appearance of excess substrate inhibition. The addition of XXXG resulted in linear noncompetitive inhibition on the hydrolysis of tamarind xyloglucan giving a K i of 1.46 ± 0.13 mM. The enzyme was devoid of transglycosylase activities.  相似文献   

4.
A metagenomic library consisting of 3,024 bacterial artificial chromosome clones was prepared in Escherichia coli DH10B with high-molecular-weight DNA extracted from red soil in South China. A novel cellulase gene with an open reading frame of 1,332 bp, cel5G, encoding an endo-β-1,4-glucanase was cloned using an activity-based screen. The deduced enzyme, Cel5G, belongs to the glycosyl hydrolase family 5 and shares <39% identity with endoglucanases in the GenBank database. cel5G was expressed in E. coli BL21, and the recombinant enzyme Cel5G was purified to homogeneity for enzymatic analysis. Cel5G hydrolyzed a wide range of β-1,4-, β-1,3/β-1,4-, or β-1,3/β-1,6-linked polysaccharides, amorphous cellulose, filter paper, and microcrystalline cellulose. Its highest activity was in 50 mM citrate buffer, pH 4.8, at 50°C. Cel5G is stable over a wide range of pH values (from 2.0 to 10.6) and is thermally stable under 60°C. It is highly tolerant and active in high salt concentrations and is stable in the presence of pepsin and pancreatin. The K m and V max values of Cel5G for carboxymethyl cellulose are 19.92 mg/ml and 1,941 μmol min−1 mg−1, respectively. These characteristics indicate that Cel5G has potential for industrial use.  相似文献   

5.
Insight into the hyperthermostable endo-β-1,3-glucanase pfLamA from Pyrococcus furiosus is obtained by using NMR spectroscopy. pfLamA functions optimally at 104 °C and recently the X-ray structure of pfLamA has been obtained at 20 °C, a temperature at which the enzyme is inactive. In this study, near-complete (>99%) NMR assignments are presented of chemical shifts of pfLamA in presence and absence of calcium at 62 °C, a temperature at which the enzyme is biologically active. The protein contains calcium and the effects of calcium on the protein are assessed. Calcium binding results in relatively small chemical shift changes in a region distant from the active site of pfLamA and thus causes only minor conformational modifications. Removal of calcium does not significantly alter the denaturation temperature of pfLamA, implying that calcium does not stabilize the enzyme against global unfolding. The data obtained form the basis for elucidation of the molecular origins involved in conformational stability and biological activity of hyperthermophilic endo-β-1,3-glucanases at extreme temperatures.  相似文献   

6.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Penicillium pinophilum KMJ601 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. When rice straw and corn steep powder were used as carbon and nitrogen sources, respectively, the maximal EG activity of 5.0 U mg protein−1, one of the highest levels among EG-producing microorganisms, was observed. The optimum temperature and pH for EG production were 28°C and 5.0, respectively. The increased production of EG by P. pinophilum in culture at 28°C was confirmed by two-dimensional electrophoresis followed by MS/MS sequencing of the partial peptide. A partial EG gene (eng5) was amplified by degenerate polymerase chain reaction (PCR) based on the peptide sequence. A full-length eng5 was cloned by genome-walking PCR, and P. pinophilum EG was identified as a member of glycoside hydrolase family 5. The present results should contribute to improved industrial production of EG by P. pinophilum KMJ601.  相似文献   

7.
An endo-1,3-β-glucanase was purified from Tunicase?, a crude enzyme preparation from Cellulosimicrobium cellulans DK-1, and determined to be a 383-residue protein (Ala1-Leu383), comprising a catalytic domain of the glycoside hydrolase family 16 and a C-terminal carbohydrate-binding module family 13. The Escherichia coli expression system of the catalytic domain (Ala1-Thr256) was constructed, and the protein with N-terminal polyhistidine tag was purified using a Ni-nitrilotriacetic acid column. We analyzed enzymatic properties of the recombinant catalytic domain, its variants, and the Tunicase?-derived full-length endo-1,3-β-glucanase. Substitution of Glu119 with Ala and deletion of Met123, both of the residues are located in the catalytic motif, resulted in the loss of hydrolytic activity. In comparison between the full-length enzyme and isolated catalytic domain, their hydrolytic activities for soluble substrates such as laminarin and laminarioligosaccharides were similar. In contrast, the hydrolytic activity of the full-length enzyme for insoluble substrates such as curdlan and yeast-glucan was significantly higher than that of the catalytic domain. It should be noted that the acid stabilities for the hydrolysis of laminarin were clearly different. Secondary structure analysis using circular dichroism showed that the full-length enzyme was more acid stable than was the catalytic domain, possibly because of domain interactions between the catalytic domain and the carbohydrate-binding module.  相似文献   

8.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Armillaria gemina KJS114 based on its morphology and internal transcribed spacer rDNA gene sequence. A. gemina EG (AgEG) was purified using a single-step purification by gel filtration. The relative molecular mass of AgEG by sodium dodecyl sulfate polyacrylamide gel electrophoresis was 65 kDa and by size exclusion chromatography was 66 kDa, indicating that the enzyme is a monomer in solution. The pH and temperature optima for hydrolysis were 5.0 and 60 °C, respectively. Purified AgEG had the highest catalytic efficiency with carboxymethylcellulose (k cat/K m?=?3,590 mg mL?1 s?1) unlike that reported for any fungal EG, highlighting the significance of the current study. The amino acid sequence of AgEG showed homology with hydrolases from the glycoside hydrolase family 61. The addition of AgEG to a Populus nigra hydrolysate reaction containing a commercial cellulase mixture (Celluclast 1.5L and Novozyme 188) showed a stimulatory effect on reducing sugar production. AgEG is a good candidate for applications that convert lignocellulosic biomass to biofuels and chemicals.  相似文献   

9.
Endoglucanase III (EGIII) was purified from Ruminococcus albus culture supernatant. An enzyme having a molecular weight of 53,000 was stabilized by mercaptoethanol and inhibited by sulfhydryl group-blocking reagents, and exhibited its highest CMC-degrading activity of pH 5.7 and 55°C. The enzyme hydrolyzed cellobiose (G2) and cellotriose (G3) only negligibly, but significantly hydrolyzed cellotetraose (G4), cellopentaose (G5) and cellohexaose (G6). The major hydrolysis reactions conducted by the enzyme were G4→2G2, G5→G2+G3, G6→G2+G4 and G6→2G3. The Vmax values of these reactions increased remarkably while the Km values decreased significantly with an increase in degree of polymerization of the substrate.  相似文献   

10.
11.
Alkaliphilic Nocardiopsis sp. strain F96 produced three -1,3-glucanase isozymes of different molecular masses (BglF1, BglF2 and BglF3). The N-terminal amino acid sequences of BglFs indicated that these isozymes were the products of a single gene. The -1,3-glucanase gene (bglF) was cloned from the chromosomal DNA of strain F96. The bglF gene encoded a polypeptide of 270 amino acids including a signal sequence. The deduced amino acid sequence of mature BglF exhibited the highest homology to those of glycoside hydrolase (GH) family 16 -1,3-glucanases, suggesting that the enzyme belonged to the GH family 16. The mature region of bglF gene was functionally expressed in Escherichia coli. The optimum pH and temperature of purified recombinant BglF were pH 9.0 and 70°C, respectively. This enzyme efficiently hydrolyzed insoluble -1,3-glucans and showed the highest activity toward a -1,3-1,4-glucan rather than -1,3-glucans. These results suggested that BglF would be a novel -1,3-glucanse. Mutational analysis revealed that Glu123 and Glu128 should be the catalytic residues of BglF.  相似文献   

12.
13.
Endo-β-1,4-glucanase (CaCel) from Antarctic springtail, Cryptopygus antarcticus, a cellulase with high activity at low temperature, shows potential industrial use. To obtain sufficient active cellulase for characterization, CaCel gene was expressed in Bombyx mori-baculovirus expression systems. Recombinant CaCel (rCaCel) has been expressed in Escherichia coli (Ec-CaCel) at temperatures below 10 °C, but the expression yield was low. Here, rCaCel with a silkworm secretion signal (Bm-CaCel) was successfully expressed and secreted into pupal hemolymph and purified to near 90 % purity by Ni-affinity chromatography. The yield and specific activity of rCaCel purified from B. mori were estimated at 31 mg/l and 43.2 U/mg, respectively, which is significantly higher than the CaCel yield obtained from E. coli (0.46 mg/l and 35.8 U/mg). The optimal pH and temperature for the rCaCels purified from E. coli and B. mori were 3.5 and 50 °C. Both rCaCels were active at a broad range of pH values and temperatures, and retained more than 30 % of their maximal activity at 0 °C. Oligosaccharide structural analysis revealed that Bm-CaCel contains elaborated N- and O-linked glycans, whereas Ec-CaCel contains putative O-linked glycans. Thermostability of Bm-CaCel from B. mori at 60 °C was higher than that from E. coli, probably due to glycosylation.  相似文献   

14.
Endo-1,3-β-glucanase from Cellulosimicrobium cellulans is composed of a catalytic domain and a carbohydrate-binding module. We have determined the X-ray crystal structure of the catalytic domain at a high resolution of 1.66 Å. The overall fold is a sandwich-like β-jelly roll architecture like the enzymes in the glycoside hydrolase family 16. The substrate-binding cleft has a length and a width of ~ 28 and ~ 15 Å, respectively, which is thought to be capable of accommodating at least six glucopyranose units. Laminarihexaose was placed into the substrate-binding cleft, namely at the subsites + 2 to − 4 from the reducing end, and the complex structure was analyzed using molecular dynamics simulations (MD) and using a rotamer search of the pocket. During the MD simulations, the substrate fluctuated more than the enzyme, where the residues at the subsites toward the non-reducing end fluctuated more than those toward the reducing end. Little conformational change of the protein was observed for the subsites + 1 and + 2, indicating that the glucose's position could be tightly restricted inside the pocket. Substrate binding experiments using isothermal titration calorimetry showed that the binding affinity of laminaritriose was higher than that of laminaribiose and similar to those of other longer laminarioligosaccharides. Taken together, the substrates mainly bind to the subsites − 1 to − 3 with the highest affinity, while the part bound to the reducing end would be hydrolyzed.  相似文献   

15.
16.
The cDNA encoding β-1,3(4)-glucanase, named PsBg16A, from Paecilomyces sp. FLH30 was cloned, sequenced, and over expressed in Pichia pastoris, with a yield of about 61,754 U mL?1 in a 5-L fermentor. PsBg16A has an open reading frame of 951 bp encoding 316 amino acids, and the deduced amino acid sequence of PsBg16A revealed that it belongs to glycoside hydrolase family 16. The purified recombinant PsBg16A had a pH optimum at 7.0 and a temperature optimum at 70 °C, and randomly hydrolyzed barley β-glucan, lichenin, and laminarin, suggesting that it is a typical endo-1,3(4)-β-glucanase (EC 3.2.1.6) with broad substrate specificity for β-glucans.  相似文献   

17.
Most reported microbial β-1,3-1,4-glucanases belong to the glycoside hydrolase family 16. Here, we report a new acidic family 7 endo-β-1,3-1,4-glucanase (Bgl7A) from the acidophilic fungus Bispora sp. MEY-1. The cDNA of Bgl7A was isolated and over-expressed in Pichia pastoris, with a yield of about 1,000 U ml–1 in a 3.7-l fermentor. The purified recombinant Bgl7A had three activity peaks at pH 1.5, 3.5, and 5.0 (maximum), respectively, and a temperature optimum at 60°C. The enzyme was stable at pH 1.0–8.0 and highly resistant to both pepsin and trypsin. Belonging to the group of non-specific endoglucanase, Bgl7A can hydrolyze not only β-glucan and cellulose but also laminarin and oat spelt xylan. The specific activity of Bgl7A against barley β-glucan and lichenan (4,040 and 2,740 U mg–1) was higher than toward carboxymethyl cellulose sodium (395 U mg–1), which was different from other family 7 endo-β-glucanases.  相似文献   

18.
β-Linked glucans such as cellulose and xyloglucan are important components of the cell walls of most dicotyledonous plants. These β-linked glucans are constantly exposed to degradation by various endo-β-glucanases from pathogenic bacteria and fungi. To protect the cell wall from degradation by such enzymes, plants secrete proteinaceous endo-β-glucanases inhibitors, such as xyloglucan-specific endo-β-1,4-glucanase inhibitor protein (XEGIP) in tomato. XEGIPs typically inhibit xyloglucanase, a member of the glycoside hydrolase (GH)12 family. XEGIPs are also found in legumes, including soybean and lupin. To date, tomato XEGIP has been well studied, whereas XEGIPs from legumes are less well understood. Here, we determined the crystal structure of basic 7S globulin (Bg7S), a XEGIP from soybean, which represents the first three-dimensional structure of XEGIP. Bg7S formed a tetramer with pseudo-222 symmetry. Analytical centrifugation and size exclusion chromatography experiments revealed that the assembly of Bg7S in solution depended on pH. The structure of Bg7S was similar to that of a xylanase inhibitor protein from wheat (Tritinum aestivum xylanase inhibitor) that inhibits GH11 xylanase. Surprisingly, Bg7S lacked inhibitory activity against not only GH11 but also GH12 enzymes. In addition, we found that XEGIPs from azukibean, yardlongbean and mungbean also had no impact on the activity of either GH12 or GH11 enzymes, indicating that legume XEGIPs generally do not inhibit these enzymes. We reveal the structural basis of why legume XEGIPs lack this inhibitory activity. This study will provide significant clues for understanding the physiological role of Bg7S.  相似文献   

19.
BackgroundMannoside phosphorylases are frequently found in bacteria and play an important role in carbohydrate processing. These enzymes catalyze the reversible conversion of β-1,2- or β-1,4-mannosides to mannose and mannose-1-phosphate in the presence of inorganic phosphate.MethodsThe biochemical parameters of this recombinantly expressed novel mannose phosphorylase were obtained. Furthermore purified reaction products were subjected to ESI- and MALDI-TOF mass spectrometry and detailed NMR analysis to verify this novel type of β-1,3-mannose linkage.ResultsWe describe the first example of a phosphorylase specifically targeting β-1,3-mannoside linkages. In addition to mannose, this phosphorylase originating from the bacterium Zobellia galactanivorans could add β-1,3-linked mannose to various other monosaccharides and anomerically modified 5-bromo-4-chloro-3-indolyl-glycosides (X-sugars).ConclusionsAn unique bacterial phosphorylase specifically targeting β-1,3-mannoside linkages was discovered.General significanceFunctional extension of glycoside hydrolase family 130.  相似文献   

20.
In the vermicomposting of paper mill sludge, the activity of earthworms is very dependent on dietetic polysaccharides including cellulose as energy sources. Most of these polymers are degraded by the host microbiota and considered potentially important source for cellulolytic enzymes. In the present study, a metagenomic library was constructed from vermicompost (VC) prepared with paper mill sludge and dairy sludge (fresh sludge, FS) and functionally screened for cellulolytic activities. Eighteen cellulase expressing clones were isolated from about 89,000 fosmid clones libraries. A short fragment library was constructed from the most active positive clone (cMGL504) and one open reading frame (ORF) of 1,092 bp encoding an endo-β-1,4-glucanase was indentified which showed 88% similarity with Cellvibrio mixtus cellulase A gene. The endo-β-1,4-glucanase cmgl504 gene was overexpressed in Escherichia coli. The purified recombinant cmgl504 cellulase displayed activities at a broad range of temperature (25–55°C) and pH (5.5–8.5). The enzyme degraded carboxymethyl cellulose (CMC) with 15.4 U, while having low activity against avicel. No detectable activity was found for xylan and laminarin. The enzyme activity was stimulated by potassium chloride. The deduced protein and three-dimensional structure of metagenome-derived cellulase cmgl504 possessed all features, including general architecture, signature motifs, and N-terminal signal peptide, followed by the catalytic domain of cellulase belonging to glycosyl hydrolase family 5 (GHF5). The cellulases cloned in this work may play important roles in the degradation of celluloses in vermicomposting process and could be exploited for industrial application in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号