首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.  相似文献   

2.
ThePichia pastoris expression system has been successfully used for production of various recombinant heterogeneous proteins. The productivity ofP. pastoris can be improved substantially by bioreactor cultivations. However, heterologous proteins degradation increases as well in high-cell density culture. Proteolytic degradation is a serious problem since the yeast has been employed to express recombinant proteins. In this review, some of the recent developments, as well as strategies for reducing proteolytic degradation of the expressed recombinant protein at cultivation, cellular and protein levels on the cytosolic proteasome, vacuolar proteases, and proteases located within the secretory pathway inP. pastoris, are reviewed.  相似文献   

3.
4.
《Biotechnology advances》2017,35(6):681-710
The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris.  相似文献   

5.
Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production.  相似文献   

6.
Streptavidin is a homotetrameric protein binding the vitamin biotin and peptide analogues with an extremely high affinity, which leads to a large variety of applications. The biotin‐auxotrophic yeast Pichia pastoris has recently been identified as a suitable host for the expression of the streptavidin gene, allowing both high product concentrations and productivities. However, so far only methanol‐based expression systems have been applied, bringing about increased oxygen demand, strong heat evolution and high requirements for process safety, causing increased cost. Moreover, common methanol‐based processes lead to large proportions of biotin‐blocked binding sites of streptavidin due to biotin‐supplemented media. Targeting these problems, this paper provides strategies for the methanol‐free production of highly bioactive core streptavidin by P. pastoris under control of the constitutive GAP promoter. Complex were superior to synthetic production media regarding the proportion of biotin‐blocked streptavidin. The optimized, easily scalable fed‐batch process led to a tetrameric product concentration of up to 4.16 ± 0.11 µM of biotin‐free streptavidin and a productivity of 57.8 nM h?1 based on constant glucose feeding and a successive shift of temperature and pH throughout the cultivation, surpassing the concentration in un‐optimized conditions by a factor of 3.4. Parameter estimation indicates that the optimized conditions caused a strongly increased accumulation of product at diminishing specific growth rates (μ ≈ D < 0.01 h?1), supporting the strategy of feeding. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:855–864, 2016  相似文献   

7.
Pichia pastoris is an efficient expression system for production of recombinant proteins. To understand its physiology for building novel applications it is important to understand and reconstruct its metabolic network. The metabolic reconstruction approach connects genotype with phenotype. Here, we have attempted to reconstruct carbohydrate metabolism pathways responsible for high biomass density and N-glycosylation pathways involved in the post translational modification of proteins of P. pastoris CBS7435. Both these metabolic pathways play a crucial role in heterologous protein production. We report novel, missing and unannotated enzymes involved in the target metabolic pathways. A strong possibility of cellulose and xylose metabolic processes in P. pastoris CBS7435 suggests its use in the area of biofuels. The reconstructed metabolic networks can be used for increased yields and improved product quality, for designing appropriate growth medium, for production of recombinant therapeutics and for making biofuels.  相似文献   

8.
9.
10.
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.  相似文献   

11.
Pichia pastoris is extensively used to produce various heterologous proteins. Amounts of biopharmaceutical drugs and industrial enzymes have been successfully produced by fed-batch high-cell-density fermentation (HCDF) of this cell factory. High levels of cell mass in defined media can be easily achieved and therefore large quantities of recombinant proteins with enhanced activities and lower costs can be obtained through HCDF technology. A robust HCDF process makes a successful transition to commercial production. Recently, efforts have been made to increase the heterologous protein production and activity by the HCDF of P. pastoris. However, challenges around selecting a suitable HCDF strategy exist. The high-level expression of a specific protein in P. pastoris is still, at least in part, limited by optimizing the methanol feeding strategy. Here, we review the progress in developments and applications of P. pastoris HCDF strategies for enhanced expression of recombinant proteins. We focus on the methanol induction strategies for efficient fed-batch HCDF in bioreactors, mainly focusing on various stat-induction strategies, co-feeding, and the limited induction strategy. These processes control strategies have opened the door for expressing foreign proteins in P. pastoris and are expected to enhance the production of recombinant proteins.  相似文献   

12.
The industrial yeast Pichia pastoris has been harnessed extensively for production of proteins, and it is attracting attention as a chassis cell factory for production of chemicals. However, the lack of synthetic biology tools makes it challenging in rewiring P. pastoris metabolism. We here extensively engineered the recombination machinery by establishing a CRISPR-Cas9 based genome editing platform, which improved the homologous recombination (HR) efficiency by more than 54 times, in particular, enhanced the simultaneously assembly of multiple fragments by 13.5 times. We also found that the key HR-relating gene RAD52 of P. pastoris was largely repressed in compared to that of Saccharomyces cerevisiae. This gene editing system enabled efficient seamless gene disruption, genome integration and multiple gene assembly with positive rates of 68–90%. With this efficient genome editing platform, we characterized 46 potential genome integration sites and 18 promoters at different growth conditions. This library of neutral sites and promoters enabled two-factorial regulation of gene expression and metabolic pathways and resulted in a 30-fold range of fatty alcohol production (12.6–380 mg/l). The expanding genetic toolbox will facilitate extensive rewiring of P. pastoris for chemical production, and also shed light on engineering of other non-conventional yeasts.  相似文献   

13.
Yeast are important production platforms for the generation of recombinant proteins. Nonetheless, their use has been restricted in the production of therapeutic proteins due to differences in their glycosylation profile with that of higher eukaryotes. The yeast strain Pichia pastoris is an industrially important organism. Recent advances in the glycoengineering of this strain offer the potential to produce therapeutic glycoproteins with sialylated human-like N- and O-linked glycans. However, like higher eukaryotes, yeast also express numerous proteases, many of which are either localized to the secretory pathway or pass through it en route to their final destination. As a consequence, nondesirable proteolysis of some recombinant proteins may occur, with the specific cleavage being dependent on the class of protease involved. Dipeptidyl aminopeptidases (DPP) are a class of proteolytic enzymes which remove a two-amino acid peptide from the N-terminus of a protein. In P. pastoris, two such enzymes have been identified, Ste13p and Dap2p. In the current report, we demonstrate that while the knockout of STE13 alone may protect certain proteins from N-terminal clipping, other proteins may require the double knockout of both STE13 and DAP2. As such, this understanding of DPP activity enhances the utility of the P. pastoris expression system, thus facilitating the production of recombinant therapeutic proteins with their intact native sequences.  相似文献   

14.
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.  相似文献   

15.
As an alternative carotenoid producer, non-carotenogenic Pichia pastoris was chosen for a reddish carotenoid lycopene production because it can grow to high cell density without accumulation of ethanol and utilize various classes of organic materials such as methanol as carbon sources. Two synthetic lycopene-pathway plasmids, pGAPZB-EBI* and pGAPZB-EpBpI*p, were designed and constructed. The pGAPZB-EpBpI*p plasmid encoded three carotenogenic enzymes that were engineered to be targeted into peroxisomes of P. pastoris whereas the pGAPZB-EBI* plasmid encoded non-targeted enzymes. After both plasmids were transformed into P. pastoris, the lycopene-producing clone containing the pGAPZB-EpBpI*p plasmid, referred to as Ω, was selected and used for further optimization study. Of the carbon sources tested, glucose resulted in the highest level of lycopene production in complex and minimal media. Batch fermentation of the Ω clone resulted in the production of 4.6 mg-lycopene/g-DCW, with a concentration of 73.9 mg/l of lycopene in minimal medium. For the first time non-carotenogenic yeast P. pastoris was metabolically engineered by heterologously expressing lycopene-pathway enzymes and the lycopene concentration of 73.9 mg/l was obtained. This serves as a basis for the development of biological process for carotenoids using P. pastoris at a commercial production level.  相似文献   

16.
Lipid droplets (LD) are the main depot of non-polar lipids in all eukaryotic cells. In the present study we describe isolation and characterization of LD from the industrial yeast Pichia pastoris. We designed and adapted an isolation procedure which allowed us to obtain this subcellular fraction at high purity as judged by quality control using appropriate marker proteins. Components of P. pastoris LD were characterized by conventional biochemical methods of lipid and protein analysis, but also by a lipidome and proteome approach. Our results show several distinct features of LD from P. pastoris especially in comparison to Saccharomyces cerevisiae. P. pastoris LD are characterized by their high preponderance of triacylglycerols over steryl esters in the core of the organelle, the high degree of fatty acid (poly)unsaturation and the high amount of ergosterol precursors. The high phosphatidylinositol to phosphatidylserine of ~ 7.5 ratio on the surface membrane of LD is noteworthy. Proteome analysis revealed equipment of the organelle with a small but typical set of proteins which includes enzymes of sterol biosynthesis, fatty acid activation, phosphatidic acid synthesis and non-polar lipid hydrolysis. These results are the basis for a better understanding of P. pastoris lipid metabolism and lipid storage and may be helpful for manipulating cell biological and/or biotechnological processes in this yeast.  相似文献   

17.
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) CBS7435 is the parental strain of commonly used P. pastoris recombinant protein production hosts making it well suited for improving the understanding of associated genomic features. Here, we present a 9.35 Mbp high-quality genome sequence of P. pastoris CBS7435 established by a combination of 454 and Illumina sequencing. An automatic annotation of the genome sequence yielded 5007 protein-coding genes, 124 tRNAs and 29 rRNAs. Moreover, we report the complete DNA sequence of the first mitochondrial genome of a methylotrophic yeast. Fifteen genes encoding proteins, 2 rRNA and 25 tRNA loci were identified on the 35.7 kbp circular, mitochondrial DNA. Furthermore, the architecture of the putative alpha mating factor protein of P. pastoris CBS7435 turned out to be more complex than the corresponding protein of Saccharomyces cerevisiae.  相似文献   

18.
19.
The yeast Pichia pastoris has become the most favored eukaryotic host for heterologous protein expression. P.?pastoris strains capable of overexpressing various membrane proteins are now available. Due to their small size and the fungal cell wall, however, P. pastoris cells are hardly suitable for direct electrophysiological studies. To overcome these limitations, the present study aimed to produce giant protoplasts of P.?pastoris by means of multi-cell electrofusion. Using a P. pastoris strain expressing channelrhodopsin-2 (ChR2), we first developed an improved enzymatic method for cell wall digestion and preparation of wall-less protoplasts. We thoroughly analyzed the dielectric properties of protoplasts by means of electrorotation and dielectrophoresis. Based on the dielectric data of tiny parental protoplasts (2?C4???m diameter), we elaborated efficient electrofusion conditions yielding consistently stable multinucleated protoplasts of P.?pastoris with diameters of up to 35???m. The giant protoplasts were suitable for electrophysiological measurements, as proved by whole-cell patch clamp recordings of light-induced, ChR2-mediated currents, which was impossible with parental protoplasts. The approach presented here offers a potentially valuable technique for the functional analysis of low-signal channels and transporters, expressed heterologously in P.?pastoris and related host systems.  相似文献   

20.
《Gene》1997,190(1):87-97
From the onset of gene technology yeasts have been among the most commonly used host cells for the production of heterologous proteins. At the beginning of this new development the attention in molecular biology and biotechnology focused on the use of the best characterized species, Saccharomyces cerevisiae, leading to an increasing number of production systems for recombinant compounds. In recent years alternative yeasts became accessible for the techniques of modern molecular genetics and, thereby, for potential applications in biotechnology. In this respect Kluyveromyces lactis, and the methylotrophs Hansenula polymorpha and Pichia pastoris have been proven to offer significant advantages over the traditional baker's yeast for the production of certain proteins. In the following article, the present status of the various yeast systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号