首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
NEDD8, a novel ubiquitin-like protein, has been shown to conjugate to proteins in a manner analogous to ubiquitination and sentrinization. Recently, human UBC12 was identified as a putative NEDD8 conjugation enzyme (E2). While investigating the in vivo function of UBC12, we found that the point mutant, UBC12(C111S), showed a dominant-negative effect on NEDD8 conjugation. This mutant, with a single Cys-to-Ser substitution at the conserved Cys residue in the E2 family, could specifically inhibit NEDD8 conjugation. We observed the dominant-negative effect on NEDD8 conjugation to substrates, including the C-terminal fragment of cullin-2 (Cul-2-DeltaN), full-length cullin-1, and also other uncharacterized target proteins. Interestingly, UBC12(C111S) formed a heterodimeric conjugate with NEDD8. This conjugate was stable under stringent conditions, including 6 m guanidine HCl, 8 m urea, 2% SDS, or 5% beta-mercaptoethanol. Our results are consistent with the hypothesis that UBC12(C111S) sequesters the NEDD8 monomer by forming a UBC12(C111S)-NEDD8 conjugate and, in turn, inhibits the subsequent transfer of NEDD8 to its targets. To examine the biological role of NEDD8 conjugation, this dominant-negative form of UBC12 was applied to a cell growth assay. Overexpression of UBC12(C111S) led to inhibition of growth in U2OS and HEK293 cells. Thus, this dominant-negative form of UBC12 could be useful in defining the role of NEDD8 modification in other biological systems.  相似文献   

2.
The pathogenetic bases of HAART-associated lipodystrophy are still poorly known, even if it is clear that adipose tissue and its metabolism are sensitive to antiretroviral therapy alone and/or in combination with HIV infection. The NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression, morphogenesis and tumorigenesis. We investigated the possible involvement of NEED8 in adipogenesis and, consequently, in HIV-related lipodystrophy.  相似文献   

3.
4.
A cyclometallated rhodium(III) complex [Rh(ppy)2(dppz)]+ (1) (where ppy = 2-phenylpyridine and dppz = dipyrido[3,2-a:2′,3′-c]phenazine dipyridophenazine) has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE). The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.  相似文献   

5.
Machado-Joseph disease (MJD/SCA3) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG tract in the coding portion of the ATXN3 gene. The presence of ubiquitin-positive aggregates of the defective protein in affected neurons is characteristic of this and most of the polyglutamine disorders. Recently, the accumulation of the neural precursor cell expressed developmentally downregulated 8 (NEDD8), a ubiquitin-like protein, in the inclusions of MJD brains was reported. Here, we report a new molecular interaction between wild-type ataxin-3 and NEDD8, using in vitro and in situ approaches. Furthermore, we show that this interaction is not dependent on the ubiquitin-interacting motifs in ataxin-3, since the presence of the Josephin domain is sufficient for the interaction to occur. The conservation of the interaction between the Caenorhabditis elegans ataxin-3 homologue (atx-3) and NEDD8 suggests its biological and functional relevance. Molecular docking studies of the NEDD8 molecule to the Josephin domain of ataxin-3 suggest that NEDD8 interacts with ataxin-3 in a substrate-like mode. In agreement, ataxin-3 displays deneddylase activity against a fluorogenic NEDD8 substrate.  相似文献   

6.
Comment on: Leidecker O, et al. Cell Cycle 2012; 1142–50In an exciting and surprising paper in a recent issue of Cell Cycle, Leidecker et al. show that the balance between protein modification by ubiquitin or the ubiquitin like protein NEDD8 is dramatically altered by cellular stress. In a variety of conditions that reduce the concentration of free ubiquitin, a very dramatic increase in protein modification by neddylation is revealed. Importantly, this process is shown to arise as NEDD8 is activated under these conditions by the ubiquitin-activating enzyme Ube1 and not by the typical NEDD8 specific EI enzyme, NAE. This results in many proteins in stressed cells being modified by mixed ubiquitin NEDD8 chains, which is highly relevant in the development of novel cancer therapeutics, as the NAE specific inhibitor MLN49242does not block this new pathway despite its promising anticancer activity.Initial comparative studies on the ubiquitin and ubiquitin-like (Ubl) protein pathways have established that each pathway has separate and specific enzymes both for activating the Ubl and for removing it.3 In the case of NEDD8, the E1 is NAE; the E2s are Ubc12 and Ube2F, and the E3s include the Rbx1 and Rbx2 RING finger proteins as well as members of the DCN family of proteins. The first studies of the NEDD8 system suggested that there were very few substrates for this modification, with most emphasis placed on the cullin proteins. The cullins are components of the cullin-RING ligases (CRLs) that are responsible for the ubiquitylation of many critical substrates, for example, oncoproteins such as cyclin E and c-myc. The cullins are modified by neddylation, which increases the E3 activity of the CRLs, probably through structural alterations that free the Ring domain of the E3 and/or by blocking the binding of inhibitory proteins such as CAND 1.4,5 Recently, many new substrates and E3 ligases for NEDD8 have been uncovered, with initial studies identifying p53 and Mdm2 as substrates for neddylation, and Mdm2 as a E3 ligase for both NEDD8 and ubiquitin.6 Proteomic approaches have now identified many more substrates, notable among them being the ribosomal proteins involved in signaling to p53.7,8 In the current study, the authors found that a high level of NEDD8-conjugated proteins were rapidly induced by proteasome inhibition with MG132, but that this reaction was not inhibited by MLN4924, even while the same compound was blocking cullin neddylation. This meant that another E1 had to be in play for the neddylation of these new substrates, and knockdown of Ube1 (which was known to be able to activate NEDD8 in vitro)9 showed that it was, indeed, responsible. Exploring further stress signals showed that this increased neddylation response was induced by heat shock and by elevated levels of reactive oxygen species (ROS). Since all of these stress pathways reduce free ubiquitin levels, the authors asked if NAE-independent neddylation could be triggered simply by reducing free ubiquitin levels. The clearly positive results of this study suggested that competition with ubiquitin for Ube1 may normally limit Ube1 activation of NEDD8 and the neddylation of non-cullin substrates (Fig. 1). Open in a separate windowFigure 1. Nedd8 pathway and stress. (A) In unstressed cells, two parallel and non-overlapping pathways are in play. Nedd8 activation is through the action of NAE, while ubiquitin is activated by Ube1. Substrate selectivity of the E2 and E3 results in many proteins being ubiquitinated, but few are Nedd8-modified, notably, the cullins. (B) Low free ubiquitin levels in stress conditions results in Nedd8 being activated by the ubiquitin Ube1 as well as NAE1. This, in turn, results in a large increase in the variety of protein substrates that are NEDD8-modified, in addition to the cullins.In stress conditions then, when free ubiquitin levels fall, Ube1 acts as a sensor of this state and neddylation increases. Why would this be useful? The speculation is that the modification of substrate proteins by NEDD8 may help the cell to cope with stress signals, for example, by promoting cell survival through inhibition of the degradation of very labile pro-survival proteins, such as Mcl-1. After the stress signal abates, the many effective de-ubiquitinating and de-neddylating enzymes can come into play to restore homeostasis. Improved mass spectrometry methods developed in this paper using Lys-C to digest neddylated proteins allow one to distinguish NEDD8 modification from ubiquitination. This helps to further refine our knowledge of this fascinating system, but, meanwhile, protein neddylation may provide a new biomarker for cellular stress. Many critical issues remain to be resolved: are there proteins with ubiquitin/NEDD8 binding domains that specifically recognize the ubiquitin NEDD8 hybrid chains that result from these stress signals? Which E2s and E3s are responsible for stress-induced neddylation? Should Ube1 inhibitors be developed to complement the NAE inhibitor in cancer treatments, or would they prove too toxic? The next few years promise to reveal critical insights into the crosstalk between the different Ubl pathways.  相似文献   

7.
Comment on: Leidecker O, et al. Cell Cycle 2012; 1142–50  相似文献   

8.
The investigation of common structural motifs provides additional information on why proteins conserve similar topologies yet may have non-conserved amino acid sequences. Proteins containing the ubiquitin superfold have similar topologies, although the sequence conservation is rather poor. Here, we present novel similarities and differences between the proteins ubiquitin and NEDD8. They have 57% identical sequence, almost identical backbone topology and similar functional strategy, although their physiological functions are mutually different. Using variable pressure NMR spectroscopy, we found that the two proteins have similar conformational fluctuation in the evolutionary conserved enzyme-binding region and contain a structurally similar locally disordered conformer (I) in equilibrium with the basic folded conformer (N). A notable difference between the two proteins is that the equilibrium population of I is far greater for NEDD8 (DeltaG(0)(NI)<5 kJ/mol) than for ubiquitin (DeltaG(0)(NI)=15.2(+/-1.0) kJ/mol), and that the tendency for overall unfolding (U) is also far higher for NEDD8 (DeltaG(0)(NU)=11.0(+/-1.5) kJ/mol) than for ubiquitin (DeltaG(0)(NU)=31.3(+/-4.7) kJ/mol). These results suggest that the marked differences in thermodynamic stabilities of the locally disordered conformer (I) and the overall unfolding species (U) are a key to determine the functional differences of the two structurally similar proteins in physiology.  相似文献   

9.
Shin YC  Tang SJ  Chen JH  Liao PH  Chang SC 《PloS one》2011,6(11):e27742
Although neuronal-precursor-cell-expressed developmentally downregulated protein-8 (NEDD8) and ubiquitin share the highest level of sequence identity and structural similarity among several known ubiquitin-like proteins, their conjugation to a protein leads to distinct biological consequences. In the study, we first identified the NEDD8 protein of Chlamydomonas reinhardtii (CrNEDD8) and discovered that CrNEDD8 is fused at the C-terminus of a ubiquitin moiety (CrUb) in a head-to-tail arrangement. This CrUb-CrNEDD8 protein was termed CrRUB1 (related to ubiquitin 1) by analogy with a similar protein in Arabidopsis thaliana (AtRUB1). Since there is high sequence identity in comparison to the corresponding human proteins (97% for ubiquitin and 84% for NEDD8), a His-CrRUB1-glutathione S-transferase (GST) fusion construct was adopted as the alternative substrate to characterize the specificity of NEDD8-specific peptidase SENP8 for CrNEDD8. The data showed that SENP8 only cleaved the peptide bond beyond the di-glycine motif of CrNEDD8 and His-RUB1 was subsequently generated, confirming that SENP8 has exquisite specificity for CrNEDD8 but not CrUb. To further determine the basis of this specificity, site-directed mutagenesis at earlier reported putative molecular determinants of NEDD8 specific recognition by SENP8 was performed. We found that a single N51E mutation of CrNEDD8 completely inhibited its hydrolysis by SENP8. Conversely, a single E51N mutation of CrUb enabled this ubiquitin mutant to undergo hydrolysis by SENP8, revealing that a single residue difference at the position 51 contributes substantially to the substrate selectivity of SENP8. Moreover, the E51N/R72A double mutant of the CrUb subdomain can further increase the efficiency of cleavage by SENP8, indicating that the residue at position 72 is also important in substrate recognition. The E51N or R72A mutation of CrUb also inhibited the hydrolysis of CrUb by ubiquitin-specific peptidase USP2. However, USP2 cannot cleave the N51E/A72R double mutant of the CrNEDD8 subdomain, suggesting that USP2 requires additional recognition sites.  相似文献   

10.
Identification of the molecular targets for post-translational modifications is an important step for explaining the regulated pathways. The ubiquitin-like molecule NEDD8 is implicated in the regulation of cell proliferation, viability and development. By combining proteomics and in vivo NEDDylation assays, we identified a subset of ribosomal proteins as novel targets for the NEDD8 pathway. We further show that the lack of NEDDylation in cells causes ribosomal protein instability. Our studies identify a novel and specific role of the NEDD8 pathway in protecting a subset of ribosomal proteins from destabilization.  相似文献   

11.
12.
NEDD8 is a novel ubiquitin-like protein that has been shown to conjugate to nuclear proteins in a manner analogous to ubiquitination and sentrinization. Recently, human cullin-4A was reported to be conjugated by a single molecule of NEDD8. Here, we show that human cullin-2 is also conjugated by a single molecule of the NEDD8. The C-terminal 171-amino-acid residues in human cullin-2 are sufficient for NEDD8-conjugation. In addition, the equivalent C-terminal fragments of other cullins have been shown to be conjugated by NEDD8. Mapping of the NEDD8-conjugation site revealed that Lys-689 in human cullin-2 is conjugated by NEDD8. Interestingly, the Lys residue at position 689 in cullin-2 is conserved in all cullin family members, including human cullin-1, -2, -3, -4A, -4B, and -5 and yeast cullin (Cdc53), suggesting the possibility that other cullin family members are conjugated by NEDD8/Rub1 at a Lys residue of equivalent position.  相似文献   

13.
14.
15.
NEDD8/Rub1 is a ubiquitin (Ub)-like post-translational modifier that is covalently linked to cullin (Cul)-family proteins in a manner analogous to ubiquitylation. NEDD8 is known to enhance the ubiquitylating activity of the SCF complex (composed of Skp1, Cul-1, ROC1 and F-box protein), but the mechanistic role is largely unknown. Using an in vitro reconstituted system, we report here that NEDD8 modification of Cul-1 enhances recruitment of Ub-conjugating enzyme Ubc4 (E2) to the SCF complex (E3). This recruitment requires thioester linkage of Ub to Ubc4. Our findings indicate that the NEDD8-modifying system accelerates the formation of the E2-E3 complex, which stimulates protein polyubiquitylation.  相似文献   

16.
17.
A ubiquitin-like modifier, NEDD8, is covalently attached to cullin-family proteins, but its physiological role is poorly understood. Here we report that the NEDD8-modifying pathway is essential for cell viability and function of Pcu1 (cullin-1 orthologue) in fission yeast. Pcu1 assembled on SCF ubiquitin-ligase was completely modified by NEDD8. Pcu1(K713R) defective for NEDD8 conjugation lost the ability to complement lethality due to pcu1 deletion. Forced expression of Pcu1(K713R) or depletion of NEDD8 in cells resulted in impaired cell proliferation and marked stabilization of the cyclin-dependent kinase inhibitor Rum1, which is a substrate of the SCF complex. Based on these findings, we propose that covalent modification of cullin-1 by the NEDD8 system plays an essential role in the function of SCF in fission yeast.  相似文献   

18.
The conjugation of the ubiquitin-like modifier NEURAL PRECURSOR CELL-EXPRESSED DEVELOPMENTALLY DOWN-REGULATED PROTEIN8/RELATED TO UBIQUITIN1 (NEDD8/RUB1; neddylation) is best known as an important posttranslational modification of the cullin subunits of cullin-RING-type E3 ubiquitin ligases (CRLs). MLN4924 has recently been described as an inhibitor of NEDD8-ACTIVATING ENZYME1 (NAE1) in human. Here, we show that MLN4924 is also an effective and specific inhibitor of NAE1 enzymes from Arabidopsis (Arabidopsis thaliana) and other plant species. We found that MLN4924-treated wild-type seedlings have phenotypes that are highly similar to phenotypes of mutants with a partial defect in neddylation and that such neddylation-defective mutants are hypersensitive to MLN4924 treatment. We further found that MLN4924 efficiently blocks the neddylation of cullins in Arabidopsis and that MLN4924 thereby interferes with the degradation of CRL substrates and their downstream responses. MLN4924 treatments also induce characteristic phenotypes in tomato (Solanum lycopersicum), Cardamine hirsuta, and Brachypodium distachyon. Interestingly, MLN4924 also blocks the neddylation of a number of other NEDD8-modified proteins. In summary, we show that MLN4924 is a versatile and specific neddylation inhibitor that will be a useful tool to examine the role of NEDD8- and CRL-dependent processes in a wide range of plant species.  相似文献   

19.
Toth JI  Yang L  Dahl R  Petroski MD 《Cell reports》2012,1(4):309-316
Inhibition of NEDD8-activating enzyme (NAE) has emerged as a highly promising approach to treat cancer through the adenosine sulfamate analog MLN4924. Here, we show that selective pressure results in HCT116 colorectal carcinoma cells with decreased MLN4924 sensitivity and identify a single-nucleotide transition that changes alanine 171 to threonine (A171T) of the NAE subunit UBA3. This reduces the enzyme's affinity for MLN4924 and ATP while increasing NEDD8 activation at physiological ATP concentrations. Expression of UBA3 A171T is sufficient to decrease MLN4924 sensitivity of naive HCT116 cells, indicating that it is a dominant suppressor of MLN4924-mediated cell death. Our data suggest that the on-target potency of MLN4924 selects for a point mutation in NAE that overcomes the molecule's inhibitory effects, allowing cancer cell survival.  相似文献   

20.
The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号