首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the antimicrobial compound triclosan (5-chloro-2′-(2,4-dichlorophenoxy)phenol) on the permeability of lecithin liposomes and rat liver mitochondria was studied. It was found that triclosan was able to increase nonspecific permeability of liposomes in a dose-dependent manner, which was detected by the release of the fluorescent probe sulforhodamine B (SRB) from vesicles. A partial release of SRB occurs instantly at the moment of triclosan addition, which is followed by a slow leakage of the dye. The triclosan-induced release of SRB from liposomes grew as pH of the medium was decreased from 9.5 to 7.5. As revealed by the laurdan generalized polarization (GP) technique, triclosan increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for triclosan-containing liposomes, which can be interpreted as phase heterogeneity of the lipid/triclosan system. Dynamic light scattering experiments also showed that at a high triclosan-to-lipid molar ratio (~ 0.5), a population of smaller light-scattering particles (~ 0.4 of the size of liposomes) appear in the system. Experiments with rat liver mitochondria demonstrated that triclosan (10–70 μM) induced a high-amplitude cyclosporin А-insensitive swelling of the organelles accompanied the release of cytochrome c. On the basis of the results obtained, possible mechanisms of the toxic effect of triclosan in eukaryotic cells are discussed.  相似文献   

2.
《Process Biochemistry》2010,45(2):196-202
The osmotic shock process for the release of periplasmic recombinant human interferon-α2b from Escherichia coli was optimized using response surface method (RSM). The process parameters such as pH, buffer concentration and sucrose concentration in hypertonic solution, cell concentration to hypertonic solution, contact time of cells with hypertonic solution, temperature of hypertonic solution, cell concentration to hypotonic solution, contact time of cells with hypotonic solution and temperature of hypotonic solution were initially screened using Plackett Burman design. Further optimization was carried out using central composite design (one of the design in RSM) for sucrose concentration in hypertonic solution as well as cell concentration to hypertonic and hypotonic solutions. The optimal cell concentration was 0.05 g/mL in hypertonic solution and 0.2 g/mL in hypotonic solution. The use of hypertonic solution containing 18% sucrose with a combination of 100 mM Tris and 2.5 mM EDTA buffer (pH 8.0 and 25 °C) and cold water (4 °C) as a hypotonic solution gave the optimum release of interferon-α2b. Increased product concentration in the final solution resulted from the optimized process would reduce the downstream steps during purification. The concept of reuse of hypertonic solution was also demonstrated.  相似文献   

3.
A simple and highly sensitive high-performance liquid chromatography procedure was developed for the determination of carnosine in urine. Carnosine was derivatized with 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride at 70 °C for 15 min in borate buffer (20 mmol l?1, pH 9.0) to produce fluorescent sulfonamides. After hydrolysis of the reaction mixture with formic acid at 100 °C for 15 min, the fluorescent derivative of carnosine was separated on a reversed-phase column with a linear gradient elution using solvents of (A) acetate buffer (0.1 mmol l?1, pH 7.0) and (B) acetonitrile at a flow-rate of 1.0 ml/min and was detected at excitation and emission wavelengths of 318 and 400 nm, respectively. The detection limit of carnosine was 4 fmol at a signal-to-noise ratio of 3. The within-day and day-to-day relative standard deviations were 2.7–4.6% and 0.4–5.2%, respectively. The concentration of carnosine in normal human urine was found to be 4.6–125 nmol (mg creatinine)?1 (mean ± SD: 21.6 ± 26.6 nmol (mg creatinine)?1, n = 20).  相似文献   

4.
The thermo-sensitive N-alkyl substituted polyacrylamide polymer was synthesized by radical polymerization and its lower critical solution temperature (LCST) was controlled to be 28 °C. The thermo-sensitive recovery of polymer was over 95% in the presence of 0.05 M NaClO4. Cibacron Blue F3GA was covalently immobilized onto the polymer via the nucleophilic reaction between the active chlorine atom of its triazine ring and the hydroxyl group of the polymer. The ligands density was 30 μmol g−1 polymer. The adsorption capacity of lysozyme on the polymer was 3.4 mg g−1polymer in affinity precipitation process. And over 90% of adsorbed lysozyme was eluted by 0.5 M KSCN at pH 8.0. When the affinity polymer was applied in the purification of lysozyme from egg white, the purification factor was 28 and lysozyme yield was 80% or so.  相似文献   

5.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

6.
In this research work, proline ester prodrug of acetaminophen (Pro-APAP) was synthesized and evaluated for its stability in PBS buffer at various pH and Caco-2 cell homogenate. The Pro-APAP is more stable at lower pH than higher pH, with half-life of 120 min in PBS buffer at pH 2.0, half-life of 65 min at pH 5.0, and half life of 3.5 min at pH 7.4, respectively. The half-life of Pro-APAP in Caco-2 cell homogenate is about 1 min, much shorter than the half-life in PBS buffer at pH 7.4, indicating enzymes in the cell homogenate contribute to the hydrolysis of the ester bond. Carboxypeptidase A was incubated with Pro-APAP at pH 7.4 with half-life of 3.8 min which is very close to the half life in buffer itself. This clearly indicates carboxypeptidase A is not one of the enzymes contributing to the hydrolysis of the prodrug. Physicochemical characteristics such as melting point and stability of newly synthesized prodrug were determined by MDSC technique.  相似文献   

7.
In this paper, we reported the synthesis and properties of interpenetrating polymer network (IPN) hydrogel systems designed for colon targeted drug delivery. The gels were composed of konjac glucomannan (KGM) and cross-linked poly(acrylic acid) (PAA) by N,N-methylene-bis-(acrylamide) (MBAAm). It was possible to modulate the swelling degree of the gels. And the swelling ratio has sensitive respondence to the environmental pH value variation. The degradation tests show that the hydrogels retain the enzymatic degradation character of KGM. In vitro release of model drug VB12 was studied in the presence of Cellulase E0240 in pH 7.4 phosphate buffer at 37 °C. The accumulative release percent of the model drug reached 85.6% after 48 h and the drug release was controlled by the swelling and the degradation of the hydrogels. The results indicated that the IPN hydrogels can be exploited as potential carriers for colon-specific drug delivery.  相似文献   

8.
Alkylresorcinolic lipids isolated from cereal grains and their semi-synthetic myristoyl-sulphonyl derivatives (MSAR) were used to modify small long-circulating sphingomyelin–cholesterol liposomes. Those SM:Chol vesicles modified with 10–30 mol% resorcinolic lipids had stable size and low membrane permeability in vitro at 4 °C and 37 °C. Liposomes containing 30 mol% MSAR showed very fast solute release in the presence of human plasma at 37 °C, which was drastically diminished in heat-inactivated plasma. In vivo studies showed that unmodified SM:Chol liposomes and those modified with alkylresorcinols were eliminated from the circulation more slowly than liposomes with the highest concentration of MSAR in membrane and were located mostly in the liver and spleen.  相似文献   

9.
In this study, thermo-sensitive N-alkyl substituted polyacrylamide polymer PNNB was synthesized by using N-hydroxymethyl acrylamide(NHAM), N-isopropyl acrylamide (NIPA) and butyl acrylate (BA) as monomers, and its low critical solution temperature (LCST) was controlled to be 28 °C. The recovery of the thermo-sensitive polymer was over 98%. Butanol as a hydrophobic ligand was covalently attached onto polymer PNNB and butyl ligand density was 80 μmol g?1 polymer. The affinity polymer was used for purification of lipase from crude material. Optimized condition was pH 7.0, 35 °C adsorption temperature, 120 min adsorption time and 0.5 mg ml?1 initial concentration of lipase. The adsorption isotherm accords with a typical Langmuir isotherm. The maximum adsorption capacity (Qm) of the affinity polymer for lipase was 24.8 mg g?1polymer. The affinity copolymer could be recycled by temperature-inducing precipitation and there was only about 6% loss of adsorption capacity after five recyclings. Specific activity of lipase was improved from 14 IU mg?1 to 506 IU mg?1 protein, and its recovery achieved 82%. The affinity polymer is suitable for the purification of target proteins from the crude material with large volume and dilute solution.  相似文献   

10.
This study was aimed at investigating the toxicity mechanism of lipopolysaccharide (LPS) on Penaeus monodon haemocytes at a cellular level. Reactive oxygen species (ROS) production, nitric oxide (NO) production, non-specific esterase activity, cytoplasmic free-Ca2 + (CF-Ca2 +) concentration, DNA damaged cell ratio and apoptotic cell ratio of in vitro LPS-treated haemocytes were measured by flow cytometry. Two concentrations of Escherichia coli LPS (5 and 10 μg mL? 1) were used. Results showed that ROS production, NO production and CF-Ca2 + concentration were significantly induced in the LPS-treated haemocytes. Ratio of DNA damaged cell and apoptotic cell increased caused by LPS, while esterase activity increased at the initial 60 min and dropped later. The initial increase in esterase activity suggested that LPS activated the release of esterase, and the later decrease might result from apoptosis. These results indicated that LPS would induce oxidative stress on shrimp haemocytes, and cause Ca2 + release, DNA damage and subsequently cell apoptosis. This process of ROS/RNS-induced Ca2 +-mediated apoptosis might be one of the toxicity mechanisms of LPS on shrimp haemocytes.  相似文献   

11.
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2 + overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2 + levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2 + influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2 + buffer capacity. These biochemical events increase cytosolic Ca2 + levels and trigger cardiomyocyte death via the activation of calpains.  相似文献   

12.
A Zn–salophen complex has been incorporated into POPC large unilamellar liposomes (LUV) obtained in phosphate buffer at pH 7.4. Fluorescence optical microscopy and anisotropy measurements show that the complex is located at the liposomal surface, close to the polar headgroups. The interaction of the POPC phosphate group with Zn2 + slowly leads to demetallation of the complex. The process follows first order kinetics and rate constants have been measured fluorimetrically in pure water and in buffered aqueous solution.The coordination of the phosphate group of monomeric POPC with salophen zinc also occurs in chloroform as detected by ESI-MS measurements.The effect of the Zn–salophen complex on the stability of POPC LUV has been evaluated at 25 °C by measuring the rate of release of entrapped 5(6)-carboxyfluorescein (CF) in the presence and in the absence of Triton X-100 as the perturbing agent. It turns out that the inclusion of the complex significantly increases the stability of POPC LUV.  相似文献   

13.
An esterase, designated as PE8 (219 aa, 23.19 kDa), was cloned from a marine bacterium Pelagibacterium halotolerans B2T and overexpressed in Escherichia coli Rosetta, resulting an active, soluble protein which constituted 23.1% of the total cell protein content. Phylogenetic analysis of the protein showed it was a new member of family VI lipolytic enzymes. Biochemical characterization analysis showed that PE8 preferred short chain p-nitrophenyl esters (C2–C6), exhibited maximum activity toward p-nitrophenyl acetate, and was not a metalloenzyme. PE8 was an alkaline esterase with an optimal pH of 9.5 and an optimal temperature of 45 °C toward p-nitrophenyl acetate. Furthermore, it was found that PE8 exhibited activity and enantioselectivity in the synthesis of methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG) from the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG). (R)-3-MFG was obtained in 71.6% ee and 73.2% yield after 36 h reaction under optimized conditions (0.6 M phosphate buffer (pH 8.0) containing 17.5% 1,4-dioxane under 30 °C). In addition, PE8 was tolerant to extremely strong basic and high ionic strength solutions as it exhibited high activity even at pH 11.0 in 1 M phosphate buffer. Given its highly soluble expression, alkalitolerance, halotolerance and enantioselectivity, PE8 could be a promising candidate for the production of (R)-3-MFG in industry. The results also demonstrate the potential of the marine environment as a source of useful biocatalysts.  相似文献   

14.
There is a great need of improved anticancer drugs and corresponding drug carriers. In particular, liposomal drug carriers with heat-activated release and targeting functions are being developed for combined hyperthermia and chemotherapy treatments of tumors. The aim of this study is to demonstrate the heat-activation of liposome targeting to biotinylated surfaces, in model experiments where streptavidin is used as a pretargeting protein. The design of the heat-activated liposomes is based on liposomes assembled in an asymmetric structure and with a defined phase transition temperature. Asymmetry between the inside and the outside of the liposome membrane was generated through the enzymatic action of phospholipase D, where lipid head groups in the outer membrane leaflet, i.e. exposed to the enzyme, were hydrolyzed. The enzymatically treated and purified liposomes did not bind to streptavidin-modified surfaces. When activation heat was applied, starting from 22 °C, binding of the liposomes occurred once the temperature approached 33 ± 0.5 °C. Moreover, it was observed that the asymmetric structure remained stable for at least 2 weeks. These results show the potential of asymmetric liposomes for the targeted binding to cell membranes in response to (external) temperature stimulus. By using pretargeting proteins, this approach can be further developed for personalized medicine, where tumor-specific antibodies can be selected for the conjugation of pretargeting agents.  相似文献   

15.
A new class of anti-inflammatory (AI) cupferron prodrugs was synthesized wherein a diazen-1-ium-1,2-diolato ammonium salt, and its O2-methyl and O2-acetoxyethyl derivatives, nitric oxide (NO) donor moieties were attached directly to an aryl carbon on a celecoxib template. The percentage of NO released from the O2-methyl and O2-acetoxyethyl compounds was higher (18.0–37.8% of the theoretical maximal release of one molecule of NO/molecule of the parent compound) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer saline (PBS) at pH 7.4 (3.8–11.6% range). All compounds exhibited weak inhibition of the COX-1 isozyme (IC50 = 5.8–17.0 μM range) in conjunction with weak or modest inhibition of the COX-2 isozyme (IC50 = 1.6–14.4 μM range). The most potent AI agent 5-[4-(O2-ammonium diazen-1-ium-1,2-diolato)phenyl]-1-(4-sulfamoylphenyl)-3-trifluoromethyl-1H-pyrazole exhibited a potency that was about fourfold and twofold greater than that observed for the respective reference drugs aspirin and ibuprofen. These studies indicate that use of a cupferron template constitutes a plausible drug design approach targeted toward the development of AI drugs that do not cause gastric irritation, or elevate blood pressure and induce platelet aggregation that have been associated with the use of some selective COX-2 inhibitors.  相似文献   

16.
Polymer conjugates of anticancer drugs have shown high potential for assisting in cancer treatments. The pH-labile spacers allow site-specific triggered release of the drugs. We synthesized and characterized model drug conjugates with hydrazide bond-containing poly[N-(2-hydroxypropyl)methacrylamide] differing in the chemical surrounding of the hydrazone bond-containing spacer to find structure–drug release rate relationships. The conjugate selected for further studies shows negligible drug release in a pH 7.4 buffer but released 50% of the ellipticinium drug within 24 h in a pH 5.0 phosphate saline buffer. The ellipticinium drug retained the antiproliferative activity of the ellipticine.  相似文献   

17.
Buffer zones along rivers and streams can provide water quality services by filtering nutrients, sediment and other contaminants from the surface. Redundancy analysis was used to determine the influence of the landscape pattern at the entire catchment scale and at multiple buffer zone scales (100 m, 300 m, 500 m, 1000 m and 1500 m) on the water quality in a highly urbanised watershed. Change-point analysis was further applied to estimate the specific locations along a gradient of landscape metric that result in a sudden change in the water quality variable. The landscape characteristics for 100 m buffer zones appeared to have a slightly greater influence on the water quality than the entire catchment. The patch density of urban land and the large patch index of water were recognised as the dominant variables influencing the water quality for a 100 m buffer zone. The result of change-point analysis indicated key interval values of the two landscape metrics within the 100 m buffer zone. When the patch density of urban land was >30–40 n/100 ha and the largest patch index of water was >2.5–3.5%, the watershed water quality appeared to be better protected.  相似文献   

18.
《Inorganica chimica acta》2006,359(7):2285-2290
Stopped-flow kinetic measurements were used to compare the reactivities of [Ru(medtra)(H2O)] (medtra3− = N-methylethylenediaminetriacetate) (1) and [Ru(hedtra)(H2O)] (2) (hedtra3− = N-hydroxyethylethylenediaminetriacetate) with NO in aqueous solution at 15 °C, pH 7.2 (phosphate buffer). The measured second-order rate constants (3 × 103 and 6 × 104 M−1 s−1 for 1 and 2, respectively) are three to four order of magnitudes lower than that for the reaction between [RuIII(edta)(H2O)] (3) with NO. However, NO scavenging studies of complexes 13, conducted by measuring the difference in nitrite production between treated and untreated murine macrophage cells, revealed that despite being less kinetically reactive toward NO, the [Ru(medtra)(H2O)] complex exhibited the highest NO scavenging ability and lowest toxicity of compounds 13.  相似文献   

19.
A rapid and sensitive CE method for the determination of 4-aminopyridine in human plasma using 3,4-diaminopyridine as an internal standard was developed and validated. The analytes were extracted from 0.5-mL aliquots of human plasma by liquid–liquid extraction, using 8 mL of ethyl ether, and injected electrokinetically into capillary electrophoresis equipment. The instrumental conditions were obtained and optimized by Design of Experiments (DOE – factorial and response surface model), having as factors: separation voltage, ionic strength (buffer concentration), pH and temperature. The response variables were migration time, resolution, tailing factor and drug peak area. After obtaining mathematically predicted values for the response variables with best factors combinations, these were reproduced experimentally in good agreement with predicted values. In addition to optimal separation conditions obtained by Design of Experiments, sensitivity was improved using electrokinetic injection at 10 kV for 10 s, and a capillary with 50 cm effective length and 100 μm I.D. The final instrumental conditions were voltage at 19 kV, capillary temperature at 15 °C, wavelength at 254 nm, and phosphate buffer 100 mM, pH 2.5 as the background electrolyte. This assay was linear over a concentration range of 2.5–80 ng/mL with a lower limit of quantification of 2.5 ng/mL. The relative standard deviation for the assay precision was <7% and the accuracy was >95%. This method was successfully applied to the quantification of 4-aminopyridine (4-AP) in plasma samples from patients with spinal cord injury.  相似文献   

20.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号