首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical Mountain Cloud Forests (TMCF) occur within narrow elevational limits with very specific climatic conditions; this type of vegetation is among the most vulnerable terrestrial ecosystems to climate change. The present study aims to analyze the local and regional climatic response of tree-ring widths of Pinus pseudostrobus at "El Cielo" Biosphere Reserve (CBR) over a 66-year period (1950–2016). We also investigated the temporal stability of the climate-growth response in four 20 years sub-periods (1950–1969, 1970–1989, 1990–2009, and 1997–2016). The results of the climate-growth analyses over the full-time period indicate a positive correlation with precipitation from previous-year November to current-year May and a negative correlation with maximum temperature and evaporation from previous-year December to current-year April and current-year January to May, respectively. We found a positive correlation with April to June PDSI and no correlation with minimum temperature. Radial growth was correlated with the climate of northeastern Mexico (i.e. Coahuila, Nuevo Leon, and Tamaulipas) and with coupled-ocean atmosphere climate modes, such as the El Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO). Correlation analyses for different periods indicate changes over time in the sensitivity of trees to climatic variability and broad-scale atmospheric circulation patterns such as PDO and AMO. Compared to the full-time period analyses the response of radial-growth to precipitation and PDSI increased in 30 and 48 % in the last 20 years, respectively.  相似文献   

2.
We present five Brachystegia spiciformis Benth. (BrSp) tree-ring chronologies from the seasonally dry miombo woodland in south central Africa. Between 9 and 34 stem discs were collected from three dry and two wet miombo sites. All samples showed distinct growth rings, which were marked by terminal parenchyma bands. Site chronologies varied in length between 43 and 149 years. An increase in the number of growth ring anomalies in older trees, however, resulted in an increase in dating error and a decrease in between-tree correlations with increase in the chronology length. Annual precipitation variability accounted for some 28% of the common variance in the BrSp chronologies and we found no difference in climate sensitivity between wet and dry miombo sites. The influence of climate, and of precipitation in particular, on tree growth was strongest at the core of the rainy season (December–February). This is also the time of the year when ENSO peaks in amplitude and ENSO effects on precipitation variability in southern Africa are the strongest. We found a negative response of tree growth to ENSO throughout most of the growth year, suggesting that the development of longer chronologies from the miombo region would allow for the investigation of temporal ENSO variability. A spatial extension of the miombo tree-ring network should therefore focus on regions where ENSO effects are the strongest (e.g., southeastern Africa).  相似文献   

3.
We developed the first tree-ring width chronology from Quercus brantii Lindel for the period 1796–2015 in the southern Zagros Mountains, Iran, using standard dendrochronological procedures. Climate-growth relationships revealed that DecemberöFebruary precipitation has strong positive effects (r = 0.66; P < 0.01) on the species’ growth while mean temperature during the growing season has strong negative effects. Spatial correlations with Palmer Drought Severity Index (PDSI) and gridded precipitation data revealed that the chronology contains regional climate signals and tree growth variations may represent precipitation fluctuations over large areas of the Middle East. The linear regression model accounts for 44% of the actual DecemberöFebruary precipitation variance. The reconstructed precipitation revealed that over the period 1850–2015 extreme dry years occurred in 1870-71, 1898, 1960 and 1963-64, and extreme wet years occurred in 1851, 1885, 1916 and 1921 in the southern Zagros region. The longest dry period lasted 16 years and occurred from 1958 to 1973. Two-year consecutive wet and dry events showed the highest frequencies and the average length of dry and wet events were 2.9 and 3.6 years over the reconstructed period. Correlations between the long-term reconstructed precipitation and the North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO) confirmed the effects of teleconnection patterns on precipitation in the southern Zagros region.  相似文献   

4.
《Dendrochronologia》2014,32(3):230-236
Three tree-ring width chronologies were developed from 75 Picea schrenkiana trees ranging from low- to high-elevation in the mountains surrounding the Issyk-Kul Lake, Northeast Kyrgyzstan. The reliable chronologies extend back to the mid-18th and late-19th centuries. Spatial correlation analysis indicates that the chronologies for the relatively high-elevation trees contain large-scale climatic signals, while the chronology at relatively low elevation may reflect the local climate variability. The results of the response of tree growth to climate show that these chronologies contain an annual precipitation signal. Furthermore, the influence of temperature indicates mainly moisture stress that is enhanced with rising elevation. The tree-ring records also captured a wetting trend in eastern Central Asia over the past decades. These new tree-ring width chronologies provide reliable proxies of precipitation variability in Central Asia and contribute to the International Tree-Ring Data Bank.  相似文献   

5.
While the forest-tundra zone in Siberia, Russia has been dendroclimatologically well-studied in recent decades, much less emphasis has been given to a wide belt of northern taiga larch forests located to the south. In this study, climate and local site conditions are explored to trace their influence on radial growth of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees developed on permafrost soils in the northern taiga. Three dendrochronological sites characterized by great differences in thermo-hydrological regime of soils were established along a short (ca. 100 m long) transect: on a river bank (RB), at riparian zone of a stream (RZ) and on a terrace (TER). Comparative analysis of the rate and year-to-year dynamics of tree radial growth among sites revealed considerable difference in both raw and standardized tree-ring width (TRW) chronologies obtained for the RZ site, characterized by shallow soil active layer depth and saturated soils. Results of dendroclimatic analysis indicated that tree-ring growth at all the sites is mostly defined by climatic conditions of a previous year and precipitation has stronger effect on TRW chronologies in comparison to the air temperatures. Remarkably, a great difference in the climatic response of TRW chronologies has been obtained for trees growing within a very short distance from each other. The positive relation of tree-ring growth with precipitation, and negative to temperature was observed in the dry site RB. In contrary, precipitation negatively and temperature positively influenced tree radial growth of larch at the water saturated RZ. Thus, a complicate response of northern Siberian larch forest productivity to the possible climate changes is expected due to great mosaic of site conditions and variability of environmental factors controlling tree-ring growth at different sites. Our study demonstrates the new possibilities for the future dendroclimatic research in the region, as various climatic parameters can be reconstructed from tree-ring chronologies obtained for different sites.  相似文献   

6.
Clanwilliam cedar (Widdringtonia cedarbergensis; WICE), a long-lived conifer with distinct tree rings in Cape Province, South Africa, has potential to provide a unique high-resolution climate proxy for southern Africa. However, the climate signal in WICE tree-ring width (TRW) is weak and the dendroclimatic potential of other WICE tree-ring parameters therefore needs to be explored. Here, we investigate the climatic signal in various tree-ring parameters, including TRW, Minimum Density (MND), Maximum Latewood Density (MXD), Maximum Latewood Blue Intensity (MXBI), and stable carbon and oxygen isotopes (δ18O and δ13C) measured in WICE samples collected in 1978. MND was negatively influenced by early spring (October-November) precipitation whereas TRW was positively influenced by spring November-December precipitation. MXD was negatively influenced by autumn (April-May) temperature whereas MXBI was not influenced by temperature. Both MXD and MXBI were negatively influenced by January-March and January-May precipitation respectively. We did not find a significant climate signal in either of the stable isotope time series, which were measured on a limited number of samples. WICE can live to be at least 356 years old and the current TRW chronology extends back to 1564 CE. The development of full-length chronologies of alternative tree-ring parameters, particularly MND, would allow for an annually resolved, multi-century spring precipitation reconstruction for this region in southern Africa, where vulnerability to future climate change is high.  相似文献   

7.
Polylepis tarapacana is the highest-elevation tree species worldwide growing between 4000 and 5000 m a.s.l. along the South American Altiplano. P. tarapacana is adapted to live in harsh conditions and has been widely used for drought and precipitation tree-ring based reconstructions. Here, we present a 400-year tree-ring width (TRW) chronology located in southern Peru (17ºS; 69ºW) at the northernmost limit of P. tarapacana tree species distribution. The objectives of this study are to assess tree growth sensitivity of a northern P. tarapacana population to (1) precipitation, temperature and El Niño Southern Oscillation (ENSO) variability; (2) to compare its growth variability and ENSO sensitivity with southern P. tarapacana forests. Our results showed that this TRW record is highly sensitive to the prior summer season (Nov-Jan) precipitation (i.e. positive correlation) when the South American Summer Monsoon (SASM) reaches its maximum intensity in this region. We also found a positive relationship with current year temperature that suggests that radial growth may be enhanced by warm, less cloudy, conditions during the year of formation. A strong positive relationship was found between el Niño 3.4 and tree growth variability during the current growing season, but negative during the previous growth period. Growth variability in our northern study site was in agreement with other populations that represent almost the full range of P. tarapacana latitudinal distribution (~ 18ºS to 23ºS). Towards the south of the P. tarapacana TRW network there was a decrease in the strength of the agreement of growth variability with our site,with the exception of higher correlation with the two southeastern sites. Similarly, the TRW chronologies recorded higher sensitivity to ENSO influences in the north and southeastern locations, which are wetter, than the drier southwestern sites . These patterns hold for the entire period, as well as for periods of high and low ENSO activity. Overall, P. tarapacana tree growth at the north of its distribution is mostly influenced by prior year moisture availability and current year temperature that are linked to large-scale climate patterns such as the SASM and ENSO, respectively.  相似文献   

8.
北亚热带马尾松年轮宽度与NDVI的关系   总被引:2,自引:0,他引:2  
北亚热带地处暖温带向亚热带的过渡地区,对环境变化较为敏感。因此,研究北亚热带马尾松年轮宽度与森林NDVI的关系对于揭示陆地生态系统对全球气候变化的响应具有重要意义。以马尾松自然分布北界的南郑县和河南省鸡公山自然保护区为研究地点,利用北亚热带马尾松年轮宽度指数和1982-2006年逐月NOAA/AVHRR的归一化植被指数(NDVI)数据及气候数据,在分析年轮宽度及NDVI与气候因子关系的基础上,重点讨论了北亚热带马尾松径向生长与NDVI之间的关系。结果表明:北亚热带NDVI受水热条件的共同控制,其中与月均温相关性较强,且以正相关为主,与月降水量和干旱度指数多负相关;马尾松的径向生长与上一生长季的温度呈正相关,降水和干旱度指数为负相关,当年生长季内的温度和降水以促进作用为主,而与干旱度指数的关系在两地区内相反;南郑县和鸡公山地区年轮宽度与NDVI年值之间关系均不显著(P>0.05)。单月来讲,南郑县3、4、12月NDVI值与年表显著相关,鸡公山地区9月份的NDVI值与差值年表RES相关性最大;南郑县树木生长受温度影响最大,而鸡公山地区受温度和降水的综合作用。因此,在北亚热带地区,长时间序列的年轮宽度数据并不能很好反应NDVI的长期变化,利用树轮宽度指数来重建北亚热带地区NDVI需要进一步研究。  相似文献   

9.
Long-term climate–growth relationships, were examined in tree rings of four co-occurring tree species from semi-arid Acacia savanna woodlands in Ethiopia. The main purpose of the study was to prove the presence of annual tree rings, evaluate the relationship between radial growth and climate parameters, and evaluate the association of El Niño and drought years in Ethiopia. The results showed that all species studied form distinct growth boundaries, though differences in distinctiveness were revealed among the species. Tree rings of the evergreen Balanites aegyptiaca were separated by vessels surrounding a thin parenchyma band and the growth boundary of the deciduous acacias was characterized by thin parenchyma bands. The mean annual diameter increment ranged from 3.6 to 5.0 mm. Acacia senegal and Acacia seyal showed more enhanced growth than Acacia tortilis and B. aegyptiaca. High positive correlations were found between the tree-ring width chronologies and precipitation data, and all species showed similar response to external climate forcing, which supports the formation of one tree-ring per year. Strong declines in tree-ring width correlated remarkably well with past El Niño Southern Oscillation (ENSO) events and drought/famine periods in Ethiopia. Spectral analysis of the master tree-ring chronology indicated occurrences of periodic drought events, which fall within the spectral peak equivalent to 2–8 years. Our results proved the strong linkage between tree-ring chronologies and climate, which sheds light on the potential of dendrochronological studies developing in Ethiopia. The outcome of this study has important implications for paleoclimatic reconstructions and in restoration of degraded lands.  相似文献   

10.
利用采集自青藏高原东南地区察隅县低海拔河谷澜沧黄杉建立树轮宽度差值年表。将树轮宽度差值年表与气候因子进行皮尔逊相关分析,利用线性回归方法重建了青藏高原东南地区1812—2016年4—5月帕尔默干旱指数(PDSI)变化(方差解释量为47%)。结果表明: 树轮宽度指数与PDSI指数有良好相关性(r=0.69,P<0.01)。PDSI重建序列存在4个偏湿阶段(1831—1844年、1853—1863年、1938—1948年和1988—2002年)、3个偏干阶段(1864—1876年、1908—1926年和2003—2016年)。与其他序列和历史记录对比分析表明,该重建序列能够较好地指示研究区历史时期干湿变化。空间分析显示,重建序列与青藏高原东南地区 PDSI 指数的变化趋势较为一致,具有很强的空间代表性。多窗谱分析表明,PDSI重建序列具有19~20、3.9、3.2、2.4和2.1年准周期变化特征,这些周期性干湿变化与亚洲夏季风和ENSO活动相关。  相似文献   

11.
Aims Drought affected by atmosphere–ocean cycle is a dominant factor influencing tree radial growth of sandy Mongolian pine (Pinus sylvestris var. mongolica) and regional vegetation dynamics in Hulunbuir, China. However, historical droughts and its correlations with tree radial growth and atmosphere–ocean cycle in this area have been little tested. Methods We developed tree-ring chronologies of Mongolian pine from Hulunbuir, Inner Mongolia, China and analyzed the correlations between tree-ring width index, the normalized difference vegetation index and Palmer drought severity index (PDSI), then developed a linear model to reconstruct the drought variability from 1829 to 2009. Long-term trends and its linkages with atmosphere–ocean cycle were performed by the power spectral, wavelet and teleconnection analysis.Important findings The local moisture variations affected largely the regional vegetation dynamics and tree-ring growth of Mongolia pine in the forest–grassland transition. Using tree-ring width chronology of Mongolian pine, the reconstruction explains 49.2% of PDSI variance during their common data period (1951–2005). The reconstruction gives a broad-scale regional representation of PDSI in the Hulunbuir area, with drought occurrences in the 1850s, 1900s, 1920s, mid-1930s and at the turn of the 21st century. Comparisons with other tree-ring drought reconstructions and historical records reveal some common drought periods and drying trends in recent decades at the northern margin zones of the East Asian summer monsoon (EASM). The drying trends in these zones occurred earlier than weakening of the EASM. A REDFIT spectral analysis shows significant peaks at 7.2, 3.9, 2.7–2.8, 2.4 and 2.2 years with a 0.05 significance level, and 36.9, 18.1 and 5.0 years with 0.1 significance level. Wavelet analysis also shows similar cycles. Drought variations in the study area significantly correlated with sea surface temperatures in the western tropical Pacific Ocean and middle and northern Indian Ocean, and the Pacific Decadal Oscillation and North Atlantic Oscillation. This suggests a possible linkage with the El Ni?o-Southern Oscillation, the EASM and the Westerlies.  相似文献   

12.
《Dendrochronologia》2014,32(2):127-136
We examined tree-ring growth in a naturally seeded old-growth slash pine (Pinus elliottii Engelm. var. elliottii) stand in coastal Georgia to develop growth-climate models and reconstruct past climatic conditions during the mid and late 1800s. We generated earlywood, latewood, and annual ring chronologies dating to 1818, based on 40 cores collected from 22 trees at the Wormsloe State Historic Site near Savannah, Georgia, with 28 cores dating before 1900. We used correlation and response function analysis to relate tree-ring growth to climatic variables and El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) indices. Water availability (represented by PDSI and secondarily, precipitation) was the most important factor determining growth for all three series, with latewood and September PDSI showing the strongest relationship. Like other species in the southeastern United States, moisture in the late winter and spring was crucial for earlywood development, while latewood and annual growth was enhanced in cooler, wetter summers, particularly with hurricanes bringing rainfall late in the growing season. Earlywood growth was greater following +ENSO (winter) phases and −NAO (winter) phases – for both indices, times when the northern Georgia coast is often relatively cool and wet. A verified split-calibration regression model based on latewood ring growth showed temporal stability and accounted for 27% of the variation in the observed September PDSI record from 1895 to 2009 (mean reduction in error = 0.21 and coefficient of efficiency = 0.05). During the instrument record, the timing of reconstructed and observed dry and moist periods matched closely; prior to that, reconstructed PDSI values indicated drought from the early 1840s to late 1850s – a period of unusually low latewood growth.  相似文献   

13.
利用采自和布克塞尔铁布克山二号沟的西伯利亚落叶松树轮样本,研制出树轮最大密度年表(MXD)和年轮宽度年表(TRW),分析了其年表特征和气候响应特点。结果表明,该样点的落叶松树轮最大密度年表与和布克塞尔气象站5-8月份平均温度和平均最高温度度均具有很好的正相关关系,最高单相关系数为0.660。用铁布克山二号沟的最大密度差值年表序列,可较好地重建和布克塞尔地区1795-2007年来春夏季平均最高温度距平,47 a重建值对实测值的解释方差达43.5%,且方程稳定。重建结果揭示,在和布克赛尔地区,20世纪平均最高温度距平要高于20世纪以前的平均最高温度距平,20世纪前中期平均最高温度距平出现了明显的上升,并且在重建的时段的末期,5-8月份平均最高温度距平表现出上升趋势。  相似文献   

14.
利用青海不同生境祁连圆柏树木年轮样本,采用3种不同去趋势方法建立树轮年表,结合青海30个气象站的气象资料,分析不同生境和去趋势方法下祁连圆柏径向生长对气候的响应差异。结果表明,祁连山区,生长季前期的平均气温是祁连圆柏树木径向生长的主要限制性因子,NEP树轮标准化宽度年表与生长季前期冬季平均气温相关最好;在柴达木盆地,生长季降水量是该地区树木径向生长的限制性因子,SPL树轮年表对生长季降水量相关较好;在青南高原,祁连圆柏径向生长对春季温度响应最为敏感,而SPL年表与春季温度呈现明显的负相关关系,相关系数达-0.606;而在青海东部地区,祁连圆柏树木径向生长对气候的响应总体不显著。位于青海西部和北部的柴达木盆地和祁连山区祁连圆柏径向生长受西风气候的影响显著,尤其是柴达木盆地,其气候受西风主导;而青南高原受西南季风影响更为显著,该地区祁连圆柏径向生长同时受西南季风气候和海拔高度两方面影响;在青海东部,祁连圆柏径向生长受东亚季风影响更为显著。  相似文献   

15.
Tree-ring research in the highland tropics and subtropics represents a major frontier for understanding climate-growth relationships. Nonetheless, there are many lowland regions – including the South American Pampa biome – with scarce tree ring data. We present the first two tree-ring chronologies for Scutia buxifolia in subtropical Southeastern South America (SESA), using 54 series from 29 trees in two sites in northern and southern Uruguay. We cross-dated annual rings and compared tree growth from 1950 to 2012 with regional climate variability, including rainfall, temperature and the Palmer Drought Severity Index – PDSI, the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Overall, ring width variability was highly responsive to climate signals linked to water availability. For example, tree growth was positively correlated with accumulated rainfall in the summer-fall prior to ring formation for both chronologies. Summer climate conditions were key for tree growth, as shown by a negative effect of hot summer temperatures and a positive correlation with PDSI in late austral summer. The El Niño phase in late spring/early summer favored an increase in rainfall and annual tree growth, while the La Niña phase was associated with less rainfall and reduced tree growth. Extratropical climate factors such as SAM had an equally relevant effect on tree growth, whereby the positive phase of SAM had a negative effect over radial growth. These findings demonstrate the potential for dendroclimatic research and climate reconstruction in a region with scarce tree-ring data. They also improve the understanding of how climate variability may affect woody growth in native forests – an extremely limited ecosystem in the Pampa biome.  相似文献   

16.
胡茂  陈峰  陈友平 《应用生态学报》2021,32(10):3609-3617
利用采自新疆阿勒泰地区西伯利亚红松树轮样本,建立树轮标准化年表,对气候水文因子对西伯利亚红松径向生长的影响进行了研究。结果表明: 西伯利亚红松年表包含较高的气候信息,与当年5—6月平均温度、平均最高温度表现出显著的负相关,与当年5—6月帕默尔干旱指数(PDSI)表现出显著的正相关,与当年1—6月降水表现出显著的正相关,与上一年11月额尔齐斯河径流表现出明显的正相关。温度和降水共同影响该地区西伯利亚红松的径向生长,其中生长期前期降水与夏季温度是影响径向生长的关键气候要素。对年表极值年的研究发现,厄尔尼诺-南方振动(ENSO)及全球大尺度环流与西伯利亚红松径向生长存在联系,ENSO通过对中亚上空气旋位置的影响使输送到阿勒泰地区的水汽产生变化,从而影响到西伯利亚红松的径向生长。  相似文献   

17.
In this paper, we analyze the relationships among the tree-ring chronology, meteorological drought (precipitation), agricultural drought (Palmer Drought Severity Index PDSI), hydrological drought (runoff), and agricultural data in the Shanxi province of North China. Correlation analyses indicate that the tree-ring chronology is significantly correlated with all of the drought indices during the main growing season from March to July. Sign test analyses further indicate that the tree-ring chronology shows variation similar to that of the drought indices in both high and low frequencies. Comparisons of the years with narrow tree rings to the severe droughts reflected in all three indices from 1957 to 2008 reveal that the radial growth of the trees in the study region can accurately record the severe drought for which all three indices were in agreement (1972, 1999, 2000, and 2001). Comparisons with the dryness/wetness index indicate that tree-ring growth can properly record the severe droughts in the history. Correlation analyses among agricultural data, tree-ring chronology, and drought indices indicate that the per-unit yield of summer crops is relatively well correlated with the agricultural drought, as indicated by the PDSI. The PDSI is the climatic factor that significantly influences both tree growth and per-unit yield of summer crops in the study region. These results indicate that the PDSI and tree-ring chronology have the potential to be used to monitor and predict the yield of summer crops. Tree-ring chronology is an important tool for drought research and for wider applications in agricultural and hydrological research.  相似文献   

18.
Most tropical regions are facing historical difficulties of generating biologically reconstructed long‐term climate records. Dendrochronology (tree‐ring studies) is a powerful tool to develop high‐resolution and exactly dated proxies for climate reconstruction. Owing to the seasonal variation in rainfall we expected the formation of annual tree rings in the wood of tropical West African tree species. In the central‐western part of Benin (upper Ouémé catchment, UOC) and in northeastern Ivory Coast (Comoé National Park, CNP) we investigated the relationship between climate (precipitation, sea surface temperature (SST)) and tree rings and show their potential for climate reconstruction. Wood samples of almost 200 trees belonging to six species in the UOC and CNP served to develop climate‐sensitive ring‐width chronologies using standard dendrochronological techniques. The relationship between local precipitation, monthly SST anomalies in the Gulf of Guinea, El Niño‐ Southern Oscillation (ENSO) and ring‐width indices was performed by simple regression analyses, two sample tests and cross‐spectral analysis. A low‐pass filter was used to highlight the decadal variability in rainfall of the UOC site. All tree species showed significant relationships with annual precipitation proving the existence of annual tree rings. ENSO signals could not be detected in the ring‐width patterns. For legume tree species at the UOC site significant relationships could be found between SST anomalies in the Gulf of Guinea indicating correlations at periods of 5.1–4.1 and 2.3 years. Our findings accurately show the relationship between tree growth, local precipitation and SST anomalies in the Gulf of Guinea possibly associated with worldwide SST patterns. A master chronology enabled the reconstruction of the annual precipitation in the UOC to the year 1840. Time series analysis suggest increasing arid conditions during the last 160 years which may have large impacts on the hydrological cycles and consequently on the ecosystem dynamics and the development of socio‐economic cultures and sectors in the Guinea‐Congolian/Sudanian region.  相似文献   

19.
The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.  相似文献   

20.
基于川西卧龙地区林线位置岷江冷杉(Abies faxoniana)的树轮宽度数据, 结合地面气象站和空间网格化气象数据, 对不同去趋势年表对气候条件的响应特征进行了比较分析。研究表明: 不同去趋势年表的气候响应特征具有很大的相似性, 具体表现为前一年9月份、当年3月份和7月份的气温, 以及前一年10-12月份的降水、当年4月份和7月份的降水对树木生长的正影响作用; 前一年11月份到当年3月份的相对湿度, 以及当年2-3月份和7-8月份的霜冻频率对树木生长的负影响作用。从不同去趋势方法对气候响应的异质性特征来看, 保守曲线、67%样芯长度步长、60年步长和90年步长的平滑样条函数去趋势年表间具有很强的相关性, 对气候响应也最明显, 特征基本一致。30年步长的平滑曲线去趋势年表与其他去趋势年表的相关性较弱, 与气候要素的相关性也明显较小。另外, 未经去趋势处理的树轮宽度年表统计参量数值要明显高于去趋势年表, 它与气候要素的相关特征也基本反映出川西卧龙地区树木生长对气候响应的基本特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号