首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin I is required for hypha formation in Candida albicans   总被引:1,自引:0,他引:1       下载免费PDF全文
The pathogenic yeast Candida albicans can undergo a dramatic change in morphology from round yeast cells to long filamentous cells called hyphae. We have cloned the CaMYO5 gene encoding the only myosin I in C. albicans. A strain with a deletion of both copies of CaMYO5 is viable but cannot form hyphae under all hypha-inducing conditions tested. This mutant exhibits a higher frequency of random budding and a depolarized distribution of cortical actin patches relative to the wild-type strain. We found that polar budding, polarized localization of cortical actin patches, and hypha formation are dependent on a specific phosphorylation site on myosin I, called the “TEDS-rule” site. Mutation of this serine 366 to alanine gives rise to the null mutant phenotype, while a S366D mutation, the product of which mimics a phosphorylated serine, allows hypha formation. However, the S366D mutation still causes a depolarized distribution of cortical actin patches in budding cells, similar to that in the null mutant. The localization of CaMyo5-GFP together with cortical actin patches at the bud and hyphal tips is also dependent on serine 366. Intriguingly, the cortical actin patches in the majority of the hyphae of the mutant expressing Camyo5S366D were depolarized, suggesting that although their distribution is dependent on myosin I localization, polarized cortical actin patches may not be required for hypha formation.  相似文献   

2.
Filamentous fungi are ideal systems to study the process of polarized growth, as their life cycle is dominated by hyphal growth exclusively at the cell apex. The actin cytoskeleton plays an important role in this growth. Until now, there have been no tools to visualize actin or the actin-binding protein fimbrin in live cells of a filamentous fungus. We investigated the roles of actin (ActA) and fimbrin (FimA) in hyphal growth in Aspergillus nidulans . We examined the localization of ActA::GFP and FimA::GFP in live cells, and each displayed a similar localization pattern. In actively growing hyphae, cortical ActA::GFP and FimA::GFP patches were highly mobile throughout the hypha and were concentrated near hyphal apices. A patch-depleted zone occupied the apical 0.5 μm of growing hypha. Both FimA::GFP and Act::GFP also localize transiently to septa. Movement and later localization of both was compromised after cytochalasin treatment. Disruption of fimA resulted in delayed polarity establishment during conidium germination, abnormal hyphal growth and endocytosis defects in apolar cells. Endocytosis was severely impaired in apolar fimA disruption cells. Our data support a novel apical recycling model which indicates a critical role for actin patch-mediated endocytosis to maintain polarized growth at the apex.  相似文献   

3.
In fungal hyphae multiple protein complexes assemble at sites of apical growth to maintain cell polarity and promote nucleation of actin. Polarity allows the directional traffic of vesicles to the Spitzenkörper (Spk) prior to fusing with the plasma membrane to provide precursors and enzymes required for cell extension and nutrition. One of these complexes is the polarisome, which in Saccharomyces cerevisiae contains Spa2p, Pea2p, Bud6p/Aip3p and Bni1p. To investigate the localization and role of the polarisome during Spk establishment in Neurospora crassa we tagged SPA-2 with the green fluorescent protein (GFP) and examined growing cells by laser scanning confocal microscopy in elongating germ tubes and mature hyphae. SPA-2-GFP accumulated gradually at the apex of germ tubes, when a FM4-64 stained Spk was not still detectable. When the germlings reached about 40 μm in length, a FM4-64 stained Spk started to be apparent and from this point on SPA-2-GFP was observed in the apical region of both germ tubes and mature hyphae, as a hand fan shape with a brighter spot at the base. Fusion of the N. crassa SPA-2-GFP strain with a N. crassa strain expressing chitin synthase 1 (CHS-1) labeled with mCherryFP indicated only partial colocalization of the polarisome and the Spk core. N. crassa SPA-2-GFP was also found at the apex of forming branches but not in septa, suggesting that it participates only in areas of tip growth. A Δspa-2 strain displayed hyphae with uneven constrictions, apices with an unstable Spk, reduced growth rate and higher number of branches than the wild type strain, indicating that SPA-2 is required for the stability, behavior and morphology of the Spk and maintenance of regular apical growth in hyphae of N. crassa, although not for polarity or Spk establishment.  相似文献   

4.
5.
We analyzed the development of multiple septa in elongated multinucleated cells (hyphae) of the filamentous ascomycete Ashbya gossypii in which septation is apparently uncoupled from nuclear cycles. A key player for this compartmentalization is the PCH protein Hof1. Hyphae that are lacking this protein form neither actin rings nor septa but still elongate at wild-type speed. Using in vivo fluorescence microscopy, we present for the first time the coordination of cytokinesis and septation in multiseptated and multinucleated cells. Hof1, the type II myosin Myo1, the landmark protein Bud3, and the IQGAP Cyk1 form collars of cortical bars already adjacent to hyphal tips, thereby marking the sites of septation. While hyphae continue to elongate, these proteins gradually form cortical rings. This bar-to-ring transition depends on Hof1 and Cyk1 but not Myo1 and is required for actin ring assembly. The Fes/CIP4 homology (FCH) domain of Hof1 ensures efficient localization of Hof1, whereas ring integrity is conferred by the Src homology 3 (SH3) domain. Up to several hours after site selection, actin ring contraction leads to membrane invagination and subsequent cytokinesis. Simultaneously, a septum forms between the adjacent hyphal compartments, which do not separate. During evolution, A. gossypii lost the homologs of two enzymes essential for cell separation in Saccharomyces cerevisiae.  相似文献   

6.
The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development.  相似文献   

7.
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins.  相似文献   

8.
Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.  相似文献   

9.
Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa.  相似文献   

10.
Distribution of microtubules and F-actin in aerobically growing cells of Dipodascus magnusii, belonging to the class Saccharomycetes was analyzed using immunofluorescence microscopy and labeling with rhodamine-tagged phalloidin. A conspicuous system of permanent cytoplasmic microtubules was observed in association with multiple nuclei. In elongating cells, helices of cytoplasmic microtubules appeared at the cell cortex. In cells approaching cytokinesis transversely oriented microtubules were revealed at incipient division sites. Confocal laser scanning microscopy showed a continuity of these transverse microtubules with the remaining microtubule network. The actin system of D. magnusii consisted of patches and filaments. Patches were found to accumulate at the tips of growing cells. Bands of fine actin filaments were usually observed before F-actin rings were established. A close cortical association of microtubules with the F-actin ring was documented on individual optical sections of labeled cells. Cells with developing septa showed medial F-actin discs associated at both sides with microtubules. Colocalization of cytoplasmic microtubules with actin filaments at the cortex of dividing cells supports a role of both cytoskeletal components in controlling cell wall growth and septum formation in D. magnusii.  相似文献   

11.
The microtubule (MT) “plus end” constitutes the platform for the accumulation of a structurally and functionally diverse group of proteins, collectively called “MT plus-end tracking proteins” (+TIPs). +TIPs control MT dynamics and link MTs to diverse sub-cellular structures. Neurospora crassa MicroTubule Binding protein-3 (MTB-3) is the homolog of yeast EB1, a highly conserved +TIP. To address the function of MTB-3, we examined strains with mtb-3 deletions, and we tagged MTB-3 with GFP to assess its dynamic behavior. MTB-3-GFP was present as comet-like structures distributed more or less homogeneously within the hyphal cytoplasm, and moving mainly towards the apex at speeds up to 4× faster than the normal hyphal elongation rates. MTB-3-GFP comets were present in all developmental stages, but were most abundant in mature hyphae. MTB-3-GFP comets were observed moving in anterograde and retrograde direction along the hypha. Retrograde movement was also observed as originating from the apical dome. The integrity of the microtubular cytoskeleton affects the presence and dynamics of MTB-3-GFP comets, while actin does not seem to play a role. The size of MTB-3-GFP comets is affected by the absence of dynactin and conventional kinesin. We detected no obvious morphological phenotypes in Δmtb-3 mutants but there were fewer MTs in Δmtb-3, MTs were less bundled and less organized. Compared to WT, both MT polymerization and depolymerization rates were significantly decreased in Δmtb-3. In summary, the lack of MTB-3 affects overall growth and morphological phenotypes of N. crassa only slightly, but deletion of mtb-3 has strong effect on MT dynamics.  相似文献   

12.
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin.  相似文献   

13.
We describe the subcellular location of chitin synthase 1 (CHS-1), one of seven chitin synthases in Neurospora crassa. Laser scanning confocal microscopy of growing hyphae showed CHS-1–green fluorescent protein (GFP) localized conspicuously in regions of active wall synthesis, namely, the core of the Spitzenkörper (Spk), the apical cell surface, and developing septa. It was also present in numerous fine particles throughout the cytoplasm plus some large vacuoles in distal hyphal regions. Although the same general subcellular distribution was observed previously for CHS-3 and CHS-6, they did not fully colocalize. Dual labeling showed that the three different chitin synthases were contained in different vesicular compartments, suggesting the existence of a different subpopulation of chitosomes for each CHS. CHS-1–GFP persisted in the Spk during hyphal elongation but disappeared from the septum after its development was completed. Wide-field fluorescence microscopy and total internal reflection fluorescence microscopy revealed subapical clouds of particles, suggestive of chitosomes moving continuously toward the Spk. Benomyl had no effect on CHS-1–GFP localization, indicating that microtubules are not strictly required for CHS trafficking to the hyphal apex. Conversely, actin inhibitors caused severe mislocalization of CHS-1–GFP, indicating that actin plays a major role in the orderly traffic and localization of CHS-1 at the apex.  相似文献   

14.
Here we describe the identification of a novel 37-kD actin monomer binding protein in budding yeast. This protein, which we named twinfilin, is composed of two cofilin-like regions. In our sequence database searches we also identified human, mouse, and Caenorhabditis elegans homologues of yeast twinfilin, suggesting that twinfilins form an evolutionarily conserved family of actin-binding proteins. Purified recombinant twinfilin prevents actin filament assembly by forming a 1:1 complex with actin monomers, and inhibits the nucleotide exchange reaction of actin monomers. Despite the sequence homology with the actin filament depolymerizing cofilin/actin-depolymerizing factor (ADF) proteins, our data suggests that twinfilin does not induce actin filament depolymerization. In yeast cells, a green fluorescent protein (GFP)–twinfilin fusion protein localizes primarily to cytoplasm, but also to cortical actin patches. Overexpression of the twinfilin gene (TWF1) results in depolarization of the cortical actin patches. A twf1 null mutation appears to result in increased assembly of cortical actin structures and is synthetically lethal with the yeast cofilin mutant cof1-22, shown previously to cause pronounced reduction in turnover of cortical actin filaments. Taken together, these results demonstrate that twinfilin is a novel, highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton.  相似文献   

15.
In filamentous ascomycetes hyphae are compartmentalized by septation in which the cytoplasm of the compartments are interconnected via septal pores. Thus, septation in filamentous fungi is different from cytokinesis in yeast like fungi. We have identified an Ashbya gossypii orthologue of the Saccharomyces cerevisiae CYK1 gene which belongs to the IQGAP-protein family. In contrast to S. cerevisiae disruption of AgCYK1 yields viable mutant strains that exhibit wildtype-like polarized hyphal growth rates. In the Agcyk1 mutant cortical actin patches localize to growing hyphal tips like wildtype, however, mutant hyphae are totally devoid of actin rings at presumptive septal sites. Septation in wildtype results in the formation of chitin rings. Agcyk1 mutant hyphae are aseptate and do not accumulate chitin in their cell walls. Agcyk1 mutant strains are completely asporogenous indicating that septation is essential for the formation of sporangia in A. gossypii. AgCyk1p-GFP localizes to sites of future septation as a ring prior to chitin depositioning. Furthermore, decrease in Cyk1p-ring diameter was found to be a prerequisite for the accumulation of chitin and septum formation.  相似文献   

16.
Yeast filamentous actin (F-actin) exists mainly as patches and cables. Previously, we investigated the behavior of F-actin during sporulation of Zygosaccharomyces rouxii and found a novel actin ring localized around the spore periphery in zygotic asci at a late stage of sporulation. To clarify whether the actin rings are also formed in sporulation in the model yeast Saccharomyces cerevisiae, we observed the distribution of F-actin in sporulating S. cerevisiae by rhodamine-phalloidin staining and confocal laser scanning microscopy. Ringlike actin structures were detected at the peripheral regions of S. cerevisiae spores in globose asci. When asci of S. cerevisiae were induced to become zygotic, actin rings were more obvious than those in globose asci. These results indicate that S. cerevisiae forms characteristic actin ring structures at a late stage of sporulation, similarly to Z. rouxii.  相似文献   

17.
We observed that 2,4-diacetylphloroglucinol (DAPG), a major antimicrobial metabolite produced by a rhizoplane bacterium Pseudomonas fluorescens ECO-001 inhibited mycelial growth of a damping-off phytopathogen Aphanomyces cochlioides AC-5 through inducing excessive branching and curling in the hyphae. This study aimed to unravel the mode of action of DAPG caused excessive branching, curling and growth inhibition of AC-5 hyphae by detecting localized changes in the cortical filamentous actin (F-actin) organization by rhodamine-conjugated phalloidin. Confocal laser scanning microscopic observations revealed that both living bacteria and DAPG severely disrupted the organization of F-actin in the A. cochlioides hyphae in a similar manner. Furthermore, an inhibitor of F-actin polymerization, latrunculin B also induced similar growth inhibition, excessive branching and caused disruption of F-actin in the AC-5 hyphae. Our results suggested that growth inhibition and excessive branching induced in A. cochlioides by DAPG is likely to be linked to the disruption of F-actin cytoskeleton in the affected hyphae. This is the first report on disruption of cytoskeleton of a eukaryotic A. cochlioides by a well-known biocontrol metabolite DAPG secreted from a prokaryotic bacterium ECO-001.  相似文献   

18.
Most models for fungal growth have proposed a directional traffic of secretory vesicles to the hyphal apex, where they temporarily aggregate at the Spitzenkörper before they fuse with the plasma membrane (PM). The PM H+-translocating ATPase (PMA-1) is delivered via the classical secretory pathway (endoplasmic reticulum [ER] to Golgi) to the cell surface, where it pumps H+ out of the cell, generating a large electrochemical gradient that supplies energy to H+-coupled nutrient uptake systems. To characterize the traffic and delivery of PMA-1 during hyphal elongation, we have analyzed by laser scanning confocal microscopy (LSCM) strains of Neurospora crassa expressing green fluorescent protein (GFP)-tagged versions of the protein. In conidia, PMA-1-GFP was evenly distributed at the PM. During germination and germ tube elongation, PMA-1-GFP was found all around the conidial PM and extended to the germ tube PM, but fluorescence was less intense or almost absent at the tip. Together, the data indicate that the electrochemical gradient driving apical nutrient uptake is generated from early developmental stages. In mature hyphae, PMA-1-GFP localized at the PM at distal regions (>120 μm) and in completely developed septa, but not at the tip, indicative of a distinct secretory route independent of the Spitzenkörper occurring behind the apex.  相似文献   

19.
Summary We have observed the distribution of filamentous actin in growing hyphae of the oomyceteSaprolegnia ferax. The actin was stained by electroporating intact hyphae in the presence of 4×10–8 M rhodamine phalloidin. Hyphae quickly recovered from electroporation and showed an apical cap of densely packed actin filaments. The pores created by the electric shock resealed in 8–10min and within 1/2 h hyphae resumed growth and appeared normal. This technique allows us to observe actin arrays during growth and may prove to be a useful tool in determining the complex roles of actin in apical growth.Abbreviations RP rhodamine phalloidin - F-actin filamentous actin  相似文献   

20.
Factors that are involved in actin polymerization, such as the Arp2/3 complex, have been found to be packaged into discrete, motile, actin-rich foci. Here we investigate the mechanism of actin-patch motility in S. pombe using a fusion of green fluorescent protein (GFP) to a coronin homologue, Crn1p. Actin patches are associated with cables and move with rates of 0.32 microm s(-1) primarily in an undirected manner at cell tips and also in a directed manner along actin cables, often away from cell tips. Patches move more slowly or stop when actin polymerization is attenuated by Latrunculin A or in arp3 and cdc3 (profilin) mutants. In a cdc8 (tropomyosin) mutant, actin cables are absent, and patches move with similar speed but in a non-directed manner. Patches are sites of Arp3-dependent F-actin polymerization in vitro. Rapid F-actin turnover rates in vivo indicate that patches and cables are maintained continuously by actin polymerization. Our studies give rise to a model in which actin patches are centres for actin polymerization that drive their own movement on actin cables using Arp2/3-based actin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号